Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Front Plant Sci ; 14: 1292045, 2023.
Article in English | MEDLINE | ID: mdl-38046599

ABSTRACT

Light plays a crucial role in photosynthesis, which is an essential process for plantlets produced during in vitro tissue culture practices and ex vitro acclimatization. LED lights are an appropriate technology for in vitro lighting but their effect on propagation and photosynthesis under in vitro condition is not well understood. This study aimed to investigate the impact of different light spectra on growth, photosynthetic functionality, and stomatal characteristics of micropropagated shoots of Persian walnut (cv. Chandler). Tissue-cultured walnut nodal shoots were grown under different light qualities including white, blue, red, far-red, green, combination of red and blue (70:30), combination of red and far-red (70:30), and fluorescent light as the control. Results showed that the best growth and vegetative characteristics of in vitro explants of Persian walnut were achieved under combination of red and blue light. The biggest size of stomata was detected under white and blue lights. Red light stimulated stomatal closure, while stomatal opening was induced under blue and white lights. Although the red and far-red light spectra resulted in the formation of elongated explants with more lateral shoots and anthocyanin content, they significantly reduced the photosynthetic functionality. Highest soluble carbohydrate content and maximum quantum yield of photosystem II were detected in explants grown under blue and white light spectra. In conclusion, growing walnut explants under combination of red and blue lights leads to better growth, photosynthesis functionality, and the emergence of functional stomata in in vitro explants of Persian walnuts.

2.
Sci Rep ; 13(1): 21381, 2023 12 04.
Article in English | MEDLINE | ID: mdl-38049454

ABSTRACT

During the seasons with limited light intensity, reductions in growth, yield, and quality are challenging for commercial cut rose production in greenhouses. Using artificial supplemental light is recommended for maintaining commercial production in regions with limited light intensity. Nowadays, replacing traditional lighting sources with LEDs attracted lots of attention. Since red (R) and blue (B) light spectra present the important wavelengths for photosynthesis and growth, in the present study, different ratios of supplemental R and B lights, including 90% R: B 10% (R90B10), 80% R: 20% B (R80B20), 70% R: 30% B (R70B30) with an intensity of 150 µmol m-2 s-1 together with natural light and without supplemental light (control) were applied on two commercial rose cultivars. According to the obtained results, supplemental light improved growth, carbohydrate levels, photosynthesis capacity, and yield compared to the control. R90B10 in both cultivars reduced the time required for flowering compared to the control treatment. R90B10 and R80B20 obtained the highest number of harvested flower stems in both cultivars. Chlorophyll and carotenoid levels were the highest under control. They had a higher ratio of B light, while carbohydrate and anthocyanin contents increased by having a high ratio of R light in the supplemental light. Analysis of chlorophyll fluorescence was indicative of better photosynthetic performance under a high ratio of R light in the supplemental light. In conclusion, the R90B10 light regime is recommended as a suitable supplemental light recipe to improve growth and photosynthesis, accelerate flowering, and improve the yield and quality of cut roses.


Subject(s)
Rosa , Plant Leaves , Light , Chlorophyll , Carbohydrates
SELECTION OF CITATIONS
SEARCH DETAIL
...