Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Diabetes Sci Technol ; : 19322968221116393, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35927975

ABSTRACT

BACKGROUND: Monitoring glucose excursions is important in diabetes management. This can be achieved using continuous glucose monitors (CGMs). However, CGMs are expensive and invasive. Thus, alternative low-cost noninvasive wearable sensors capable of predicting glycemic excursions could be a game changer to manage diabetes. METHODS: In this article, we explore two noninvasive sensor modalities, electrocardiograms (ECGs) and accelerometers, collected on five healthy participants over two weeks, to predict both hypoglycemic and hyperglycemic excursions. We extract 29 features encompassing heart rate variability features from the ECG, and time- and frequency-domain features from the accelerometer. We evaluated two machine-learning approaches to predict glycemic excursions: a classification model and a regression model. RESULTS: The best model for both hypoglycemia and hyperglycemia detection was the regression model based on ECG and accelerometer data, yielding 76% sensitivity and specificity for hypoglycemia and 79% sensitivity and specificity for hyperglycemia. This had an improvement of 5% in sensitivity and specificity for both hypoglycemia and hyperglycemia when compared with using ECG data alone. CONCLUSIONS: Electrocardiogram is a promising alternative not only to detect hypoglycemia but also to predict hyperglycemia. Supplementing ECG data with contextual information from accelerometer data can improve glucose prediction.

2.
Sci Rep ; 11(1): 18909, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34556747

ABSTRACT

Mosquitoes transmit several infectious diseases that pose significant threat to human health. Temperature along with other environmental factors at breeding and resting locations play a role in the organismal development and abundance of mosquitoes. Accurate analysis of mosquito population dynamics requires information on microclimatic conditions at breeding and resting locations. In this study, we develop a regression model to characterize microclimatic temperature based on ambient environmental conditions. Data were collected by placing sensor loggers at resting and breeding locations such as storm drains across Houston, TX. Corresponding weather data was obtained from National Oceanic and Atmospheric Administration website. Features extracted from these data sources along with contextual information on location were used to develop a Generalized Linear Model for predicting microclimate temperatures. We also analyzed mosquito population dynamics for Aedes albopictus under ambient and microclimatic conditions using system dynamic (SD) modelling to demonstrate the need for accurate microclimatic temperatures in population models. The microclimate prediction model had an R2 value of ~ 95% and average prediction error of ~ 1.5 °C indicating that microclimate temperatures can be reliably estimated from the ambient environmental conditions. SD model analysis indicates that some microclimates in Texas could result in larger populations of juvenile and adult Aedes albopictus mosquitoes surviving the winter without requiring dormancy.

3.
JMIR Diabetes ; 6(2): e26909, 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33913816

ABSTRACT

BACKGROUND: Predictive alerts for impending hypoglycemic events enable persons with type 1 diabetes to take preventive actions and avoid serious consequences. OBJECTIVE: This study aimed to develop a prediction model for hypoglycemic events with a low false alert rate, high sensitivity and specificity, and good generalizability to new patients and time periods. METHODS: Performance improvement by focusing on sustained hypoglycemic events, defined as glucose values less than 70 mg/dL for at least 15 minutes, was explored. Two different modeling approaches were considered: (1) a classification-based method to directly predict sustained hypoglycemic events, and (2) a regression-based prediction of glucose at multiple time points in the prediction horizon and subsequent inference of sustained hypoglycemia. To address the generalizability and robustness of the model, two different validation mechanisms were considered: (1) patient-based validation (model performance was evaluated on new patients), and (2) time-based validation (model performance was evaluated on new time periods). RESULTS: This study utilized data from 110 patients over 30-90 days comprising 1.6 million continuous glucose monitoring values under normal living conditions. The model accurately predicted sustained events with >97% sensitivity and specificity for both 30- and 60-minute prediction horizons. The false alert rate was kept to <25%. The results were consistent across patient- and time-based validation strategies. CONCLUSIONS: Providing alerts focused on sustained events instead of all hypoglycemic events reduces the false alert rate and improves sensitivity and specificity. It also results in models that have better generalizability to new patients and time periods.

4.
J Diabetes Sci Technol ; 15(4): 842-855, 2021 07.
Article in English | MEDLINE | ID: mdl-32476492

ABSTRACT

BACKGROUND: Hypoglycemia is a serious health concern in youth with type 1 diabetes (T1D). Real-time data from continuous glucose monitoring (CGM) can be used to predict hypoglycemic risk, allowing patients to take timely intervention measures. METHODS: A machine learning model is developed for probabilistic prediction of hypoglycemia (<70 mg/dL) in 30- and 60-minute time horizons based on CGM datasets obtained from 112 patients over a range of 90 days consisting of over 1.6 million CGM values under normal living conditions. A comprehensive set of features relevant for hypoglycemia are developed and a parsimonious subset with most influence on predicting hypoglycemic risk is identified. Model performance is evaluated both with and without contextual information on insulin and carbohydrate intake. RESULTS: The model predicted hypoglycemia with >91% sensitivity for 30- and 60-minute prediction horizons while maintaining specificity >90%. Inclusion of insulin and carbohydrate data yielded performance improvement for 60-minute but not for 30-minute predictions. Model performance was highest for nocturnal hypoglycemia (~95% sensitivity). Shortterm (less than one hour) and medium-term (one to four hours) features for good prediction performance are identified. CONCLUSIONS: Innovative feature identification facilitated high performance for hypoglycemia risk prediction in pediatric youth with T1D. Timely alerts of impending hypoglycemia may enable proactive measures to avoid severe hypoglycemia and achieve optimal glycemic control. The model will be deployed on a patient-facing smartphone application in an upcoming pilot study.


Subject(s)
Diabetes Mellitus, Type 1 , Hypoglycemia , Adolescent , Blood Glucose , Blood Glucose Self-Monitoring , Child , Diabetes Mellitus, Type 1/drug therapy , Humans , Hypoglycemia/diagnosis , Hypoglycemic Agents , Insulin , Machine Learning , Pilot Projects
SELECTION OF CITATIONS
SEARCH DETAIL
...