Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38867668

ABSTRACT

Adult rats exposed to hyperoxia (>95% O2) die from respiratory failure in 60-72 hours. However, rats preconditioned with >95% O2 for 48 hours followed by 24 hours in room air (H-T) acquire tolerance of hyperoxia, while rats preconditioned with 60% O2 for 7 days (H-S) become more susceptible. Our objective was to evaluate lung tissue mitochondrial bioenergetics in H-T and H-S rats. Bioenergetics were assessed in mitochondria isolated from lung tissue of H-T, H-S, and control rats. Expressions of complexes involved in oxidative phosphorylation (OxPhos) were measured in lung tissue homogenate. Pulmonary endothelial filtration coefficient (Kf) and tissue mitochondrial membrane potential (ΔΨm) were evaluated in isolated perfused lungs. Results show that ADP-induced state 3 OxPhos capacity (Vmax) decreased in H-S mitochondria but increased in H-T. ΔΨm repolarization time following ADP-stimulated depolarization increased in H-S mitochondria. Complex I expression decreased in H-T (38%) and H-S (43%) lung homogenate, whereas complex V expression increased (70%) in H-T lung homogenate. ΔΨm is unchanged in H-S and H-T lungs, but complex II has a larger contribution to ΔΨm in H-S than H-T lungs. Kf increased in H-S, but not H-T lungs. For H-T, increased complex V expression and Vmax counter the effect of the decrease in complex I expression on ΔΨm. A larger complex II contribution to ΔΨm along with decreased Vmax and increased Kf could make H-S rats more hyperoxia susceptible. Results are clinically relevant since ventilation with ≥60% O2 is often required for extended periods in Acute Respiratory Distress Syndrome patients.

2.
Interdiscip Sci ; 13(1): 12-24, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33170431

ABSTRACT

Calcium oscillations are an imperative mode of signaling phenomenon. These oscillations are due to the active interactions taking place between some of the parameters like voltage gated calcium channels (VGCC), sodium calcium exchanger (NCX), calcium binding buffers, endoplasmic reticulum (ER) and mitochondria. The present paper focuses on the problem of higher level of calcium concentration in neurons which may further result into Alzheimer's Disease (AD). For this, a three-dimensional mathematical model having a system of differential equations depicting the changes in cytosolic calcium (in presence of buffers, VGCC and NCX), ER calcium and mitochondrial calcium, is formulated. A three-dimensional neuronal structure is targeted as the domain which is further discussed and solved using finite element technique in Comsol Multiphysics 5.4. Apposite boundary conditions matching well with the in-situ conditions are assumed. The obtained results clearly show the significance of the lower amount of the buffer and higher calcium mediated activities of VGCC, NCX, ER and mitochondria on calcium profile. These changes may lead to AD. To transit from AD condition to normal, exogenous buffers are added to check their significance. The results thus show that the replenishment of buffer may balance the amount of cell calcium and hence can affect positively on Alzheimer's affected cells.


Subject(s)
Calcium Signaling , Neurons , Calcium/metabolism , Cells, Cultured , Models, Theoretical , Neurons/metabolism
3.
Interdiscip Sci ; 10(4): 674-685, 2018 Dec.
Article in English | MEDLINE | ID: mdl-27882454

ABSTRACT

Nerve cells like neurons and astrocytes in central nervous system (CNS) take part in the signaling process which means the transformation of the information from one cell to another via signals. The signaling process is affected by various external parameters like buffers calcium-binding proteins, voltage-gated calcium channel. In the present paper, the role of buffers in the cytoplasmic calcium concentration distribution is shown. The elicitation in calcium concentration is due to the presence of lower amount calcium-binding proteins which can be shown graphically. The mathematical model is designed by keeping in mind the physiological condition taking place in CNS of mammalian brain. The thing to be noted here is that the more elicitation in the calcium concentration distribution results in the cell death which finally give neurodegenerative disease to the mammalian brain. The present paper gives a glimpse of Parkinson's diseases in particular. Computational results are performed in Wolfram Mathematica 9.0 and simulated on core(TM) i5-3210M CPU @ 2.50 GHz processing speed and 4 GB memory. It is found that the different types of buffer like ethylene glycol-bis([Formula: see text]-aminoethyl ether)-N,N,N',N'-tetraacetic acid, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid and calmodulin have noteworthy effect at different fractions of time.


Subject(s)
Calcium-Binding Proteins/metabolism , Calcium/metabolism , Cytosol/metabolism , Neurons/metabolism , Models, Biological , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...