Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Ann Neurosci ; 21(4): 129-33, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25452672

ABSTRACT

BACKGROUND: Autism Spectrum Disorder (ASD) is a complex neurobehavioral syndrome with no known biomarker so far for early detection. It has been challenging, both to classify typical autism and associate a suitable biomarker with clinical phenotype spectrum. Brain-derived neurotrophic factor (BDNF) has emerged as a key neurotrophin regulating synaptic plasticity, neuronal differentiation and survival. PURPOSE: Recently, BDNF depletion is reported in neurodegenerative as well as in psychiatric disorders, associated with severity of neurological dysfunction. Role of BDNF as a biomarker in ASD is gaining significance. Pre-clinical results have linked BDNF depletion in autism and mental retardation, however, with conflicting findings. METHODS: In view of this, a preliminary study was carried out to measure serum BDNF levels in 48 children with ASD and mental retardation, and 29 age-matched controls. RESULTS: Serum BDNF levels were found significantly higher (p<0.001) in atypical autistic subjects (clinically milder phenotype) as compared to controls, but not in typical ASD cases (clinically severe phenotype). BDNF levels were significantly lower in females with typical/Rett Syndrome (p<0.05), but not in males with typical autism (p>0.1), as compared to controls. Lower BDNF levels indicate impairment in neuroprotective mechanism, while higher levels may imply a manifested protective response. CONCLUSION: Our study highlights the differential BDNF response based on the severity of neurobehavioral deficit, indicating a possible neuroprotective role of this molecule and supporting its exploration in targeted therapy in ASD.

2.
Indian J Pediatr ; 77(2): 203-5, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19936666

ABSTRACT

Chitotriosidase (ChT) is an enzyme that is selectively activated in tissue macrophage. This property of ChT makes it a potential marker for many disease process and prognostication. Present study has been carried out to know the significance of ChT as a screening marker in lysosomal storage disorders (LSDs) where tissue macrophage activation is commonly observed due to accumulation of substrate in various organs of the body. Study comprises of 20 healthy children in the age range of 10 days to 5 yrs and 56 children in the age range of 2.5 months to 13 yrs with regression of milestones, skeletal dysplasia, neuroregression and hepatosplenomegaly were selected for plasma ChT who had confirmed LSDs as carried out by specific lysosomal enzyme study from the leukocytes or fibroblasts. Plasma ChT was 55.21 +/- 20.81 nmol/ml/hr in twenty healthy age matched controls. Plasma ChT level was 42.88 to 79.78 nmol/ml/hr in thirteen of 56 (23.21%) children with LSDs like Morquio-B, Pompe, Metachromatic leucodystrophy (MLD), Sandhoff and Niemann-Pick disease type C (NPD-C). While in 43 (76.78%) children it was in the range of 213.74 to 23,511.40 nmol/ml/hr. who had LSDs like Morquio-B, Sly syndrome, MLD, GM2 Gangliosidosis, NPD-A/B and Gaucher disease (GD). Marked elevated ChT (4,000 to 23,511 nmol/ml/hr) was observed in all cases of GD (n=7) and NDP-A/B. It can be concluded from the present study that moderately raised activity of ChT can be utilized as a positive predictive test for certain LSD's. Those with marked elevated ChT have confirmed GD or NPD-A/B making it a strong screening marker for this group of diseases.


Subject(s)
Hexosaminidases/metabolism , Lysosomal Storage Diseases/enzymology , Adolescent , Child , Child, Preschool , Female , Hexosaminidases/blood , Humans , Infant , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...