Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38826401

ABSTRACT

Δ9-tetrahydrocannabinol (THC) is the principal psychoactive compound derived from the cannabis plant Cannabis sativa and approved for emetic conditions, appetite stimulation and sleep apnea relief. THC's psychoactive actions are mediated primarily by the cannabinoid receptor CB1. Here, we determine the cryo-EM structure of HU210, a THC analog and widely used tool compound, bound to CB1 and its primary transducer, Gi1. We leverage this structure for docking and 1,000 ns molecular dynamics simulations of THC and 10 structural analogs delineating their spatiotemporal interactions at the molecular level. Furthermore, we pharmacologically profile their recruitment of Gi and ß-arrestins and reversibility of binding from an active complex. By combining detailed CB1 structural information with molecular models and signaling data we uncover the differential spatiotemporal interactions these ligands make to receptors governing potency, efficacy, bias and kinetics. This may help explain the actions of abused substances, advance fundamental receptor activation studies and design better medicines.

3.
Chemistry ; 26(47): 10861-10870, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32428333

ABSTRACT

Quantum chemical calculations were used to study the reaction of carboxylic acids with isonitriles inside a resorcinarene-based self-assembled capsule. Experimentally, it has been shown that the reactions between p-tolylacetic acid and n-butyl isonitrile or isopropyl isonitrile behave differently in the presence of the capsule compared both with each other and also with their solution counterparts. Herein, the reasons for these divergent behaviors are addressed by comparing the detailed energy profiles for the reactions of the two isonitriles inside and outside the capsule. An energy decomposition analysis was conducted to quantify the different factors affecting the reactivity. The calculations reproduce the experimental findings very well. Thus, encapsulation leads to lowering of the energy barrier for the first step of the reaction, the concerted α-addition and proton transfer, which in solution is rate-determining, and this explains the rate acceleration observed in the presence of the capsule. The barrier for the final step of the reaction, the 1,3 O→N acyl transfer, is calculated to be higher with the isopropyl substituent inside the capsule compared with n-butyl. With the isopropyl substituent, the transition state and the product of this step are significantly shorter than the preceding intermediate, and this results in energetically unfavorable empty spaces inside the capsule, which cause a higher barrier. With the n-butyl substituent, on the other hand, the carbon chain can untwine and hence uphold an appropriate guest length.

4.
J Org Chem ; 84(11): 7354-7361, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31062978

ABSTRACT

Density functional theory calculations are employed to investigate the mechanism and energies of the decomposition of N-nitrosoamides in the presence of a resorcinarene-based self-assembled nanocapsule. From experiments, it is known that confinement in the capsule inhibits the thermal decomposition of these compounds. N-Nitrosoamides with both aromatic and aliphatic substituents are considered here and the calculations show that, for both kinds, binding to the capsule leads to a significant increase in the energy barrier of the rate-determining step, the 1,3 N→O acyl transfer reaction. A distortion-interaction analysis is conducted to probe the reasons behind the inhibition of the reaction. In addition, we characterized hypothetical intermediates that might be involved in the formation of the decomposition products inside the capsule. Interestingly, it is found that the capsule stabilizes ion-pair species that are unstable in mesitylene solution. Finally, a possible explanation is proposed for the observed encapsulation of the decomposition product of only one of the substrates.

5.
J Am Chem Soc ; 140(39): 12527-12537, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30185035

ABSTRACT

The host-guest binding properties of a water-soluble resorcinarene-based cavitand are examined using density functional theory methodology. Experimentally, the cavitand has been observed to self-assemble in aqueous solution into both 1:1 and 2:1 host/guest complexes with hydrophobic guests such as n-alkanes. For n-decane, equilibrium was observed between the 1:1 and 2:1 complexes, while 1:1 complexes are formed with shorter n-alkanes and 2:1 complexes are formed with longer ones. These findings are used to assess the standard quantum chemical methodology. It is first shown that a rather advanced computational protocol (B3LYP-D3(BJ)/6-311+G(2d,2p) with COSMO-RS and quasi-rigid-rotor-harmonic-oscillator) gives very large errors. Systematic examination of the various elements of the methodology shows that the error stems from the implicit solvation model. A mixed explicit-implicit solvation protocol is developed that involves a parametrization of the hydration free energy of water such that water cluster formation in water is predicted to be thermoneutral. This new approach is demonstrated to lead to a major improvement in the calculated binding free energies of n-alkanes, reproducing very well the 1:1 versus 2:1 host/guest binding trends.

6.
J Am Chem Soc ; 139(43): 15494-15503, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29019655

ABSTRACT

Dispersion-corrected density functional theory is used to study the cycloaddition reaction between phenyl acetylene and phenyl azide inside a synthetic, self-assembled capsule. The capsule is first characterized computationally and a previously unrecognized structure is identified as being the most stable. Next, an examination of the free energies of host-guest complexes is conducted, considering all possible reagent, solvent, and solvent impurity combinations as guests. The experimentally observed relative stabilities of host-guest complexes are quite well reproduced, when the experimental concentrations are taken into account. Experimentally, the presence of the host capsule has been shown to accelerate the cycloaddition reaction and to yield exclusively the 1,4-regioisomer product. Both these observations are reproduced by the calculations. A detailed energy decomposition analysis shows that reduction of the entropic cost of bringing together the reactants along with a geometric destabilization of the reactant supercomplex are the major contributors to the rate acceleration compared to the background reaction. Finally, a sensitivity analysis is conducted to assess the stability of the results with respect to the choice of methodology.

7.
Inorg Chem ; 55(4): 1872-82, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26812142

ABSTRACT

Density functional theory calculations have been used to investigate the reaction mechanisms of phosphodiester hydrolysis and transesterification catalyzed by a dinuclear zinc complex of the 2-(N-isopropyl-N-((2-pyridyl)methyl)aminomethyl)-6-(N-(carboxylmethyl)-N-((2-pyridyl)methyl)amino-methyl)-4-methylphenol (IPCPMP) ligand, mimicking the active site of zinc phosphotriesterase. The substrates bis(2,4)-dinitrophenyl phosphate (BDNPP) and 2-hydroxypropyl-p-nitrophenyl phosphate (HPNP) were employed as analogues of DNA and RNA, respectively. A number of different mechanistic proposals were considered, with the active catalyst harboring either one or two hydroxide ions. It is concluded that for both reactions the catalyst has only one hydroxide bound, as this option yields lower overall energy barriers. For BDNPP hydrolysis, it is suggested that the hydroxide acts as the nucleophile in the reaction, attacking the phosphorus center of the substrate. For HPNP transesterification, on the other hand, the hydroxide is proposed to act as a Brønsted base, deprotonating the alcohol moiety of the substrate, which in turn performs the nucleophilic attack. The calculated overall barriers are in good agreement with measured rates. Both reactions are found to proceed by essentially concerted associative mechanisms, and it is demonstrated that two consecutive catalytic cycles need to be considered in order to determine the rate-determining free energy barrier.


Subject(s)
Biomimetics , Esters/chemistry , Zinc/chemistry , Esterification , Hydrolysis , Models, Molecular
8.
J Inorg Biochem ; 132: 6-17, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24001510

ABSTRACT

The dinuclear complex [Zn(2)(DPCPMP)(pivalate)](ClO4), where DPCPMP is the new unsymmetrical ligand [2-(N-(3-((bis((pyridin-2-yl)methyl)amino)methyl)-2-hydroxy-5-methylbenzyl)-N-((pyridin-2-yl)methyl)amino)acetic acid], has been synthesized and characterized. The complex is a functional model for zinc phosphoesterases with dinuclear active sites. The hydrolytic efficacy of the complex has been investigated using bis-(2,4-dinitrophenyl)phosphate (BDNPP), a DNA analog, as substrate. Speciation studies using potentiometric titrations have been performed for both the ligand and the corresponding dizinc complex to elucidate the formation of the active hydrolysis catalyst; they reveals that the dinuclear zinc(II) complexes, [Zn(2)(DPCPMP)](2+) and [Zn(2)(DPCPMP)(OH)](+) predominate the solution above pH4. The relatively high pK(a) of 8.38 for water deprotonation suggests that a terminal hydroxide complex is formed. Kinetic investigations of BDNPP hydrolysis over the pH range 5.5-11.0 and with varying metal to ligand ratio (metal salt:ligand=0.5:1 to 3:1) have been performed. Variable temperature studies gave the activation parameters ΔH(‡)=95.6kJmol(-1), ΔS(‡)=-44.8Jmol(-1)K(-1), and ΔG(‡)=108.0 kJmol(-1). The cumulative results indicate the hydroxido-bridged dinuclear Zn(II) complex [Zn(2)(DPCPMP)(µ-OH)](+) as the effective catalyst. The mechanism of hydrolysis has been probed by computational modeling using density functional theory (DFT). Calculations show that the reaction goes through one concerted step (S(N)2 type) in which the bridging hydroxide in the transition state becomes terminal and performs a nucleophilic attack on the BDNPP phosphorus; the leaving group dissociates simultaneously in an overall inner sphere type activation. The calculated free energy barrier is in good agreement with the experimentally determined activation parameters.


Subject(s)
Catalytic Domain , Coordination Complexes/chemistry , Esterases/chemistry , Models, Molecular , Nitrogen Oxides/chemistry , Zinc/chemistry , Computer Simulation , Ligands , Molecular Structure , Phosphorus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...