Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Process Impacts ; 22(1): 173-186, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31808488

ABSTRACT

Volatile and semi-volatile organic compounds (S/VOCs) are ubiquitous in the environment, come from a wide variety of anthropogenic and biogenic sources, and are important determinants of environmental and human health due to their impacts on air quality. They can be continuously measured by direct mass spectrometry techniques without chromatographic separation by membrane introduction mass spectrometry (MIMS) and proton-transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS). We report the operation of these instruments in a moving vehicle, producing full scan mass spectral data to fingerprint ambient S/VOC mixtures with high temporal and spatial resolution. We describe two field campaigns in which chemometric techniques are applied to the full scan MIMS and PTR-ToF-MS data collected with a mobile mass spectrometry lab. Principal Component Analysis (PCA) has been successfully employed in a supervised analysis to discriminate VOC samples collected near known VOC sources including internal combustion engines, sawmill operations, composting facilities, and pulp mills. A Gaussian mixture model and a density-based spatial clustering of application with noise (DBSCAN) algorithm have been used to identify sample clusters within the full time series dataset collected and we present geospatial maps to visualize the distribution of VOC sources measured by PTR-ToF-MS.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Air Pollutants/analysis , Environmental Monitoring , Humans , Mass Spectrometry , Principal Component Analysis , Protons , Volatile Organic Compounds/analysis
2.
Rapid Commun Mass Spectrom ; 32(4): 349-360, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29277946

ABSTRACT

RATIONALE: Volatile and semi-volatile organic compounds (S/VOCs) are important atmospheric pollutants affecting both human and environmental health. They are directly measured as an unresolved mixture using membrane introduction mass spectrometry (MIMS). We apply chemometric techniques to discriminate, classify, and apportion air samples from a variety of sources. METHODS: Full scan mass spectra of lab-constructed air samples were obtained using a polydimethylsiloxane membrane interface and an electron ionization ion trap mass spectrometer. Normalized full scan spectra were analyzed using principal component analysis (PCA), cluster analysis, and k-nearest neighbours (kNN) for sample discrimination and classification. Multivariate curve resolution (MCR) was used to extract pure component contributions. Similar techniques were applied to VOC mixtures sampled from different woodsmoke emissions and from the headspace above aqueous hydrocarbon solutions. RESULTS: PCA successfully discriminated 32 constructed VOC mixtures from nearly 300 air samples, with cluster analysis showing similar results. Further, kNN classification (k = 1) correctly classified all but one test set sample, and MCR successfully identified the pure compounds used to construct the VOC mixtures. Real-world samples resulting from the combustion of different wood species and those associated with water contaminated with different commercial hydrocarbon products were similarly discriminated by PCA. CONCLUSIONS: Chemometric techniques have been evaluated using full scan MIMS spectra with a series of VOC mixtures of known composition containing known compounds, and successfully applied to samples with known sources, but unknown molecular composition. These techniques have application to source identification and apportionment in real-world environmental samples impacted by atmospheric pollutants.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Mass Spectrometry/methods , Hydrocarbons/analysis , Multivariate Analysis , Principal Component Analysis , Smoke/analysis , Volatile Organic Compounds/analysis
3.
J Chromatogr Sci ; 47(1): 57-66, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19161658

ABSTRACT

Membrane introduction mass spectrometry (MIMS) is emerging as an important technique for on-line, real-time environmental monitoring. Because MIMS interfaces are simple and robust, they are ideally suited for operation in MS instrumentation used for in-field applications. We report the use of an on-line permeation tube to continuously infuse an isotopically labeled internal standard for continuous quantitative determinations in atmospheric and aqueous samples without the need for off-line calibration. This approach also provides important information on the operational performance of the analytical system during multi-day deployments. We report measured signal stability during on-line deployments in air and water of 7% based on variation of the internal standard response and have used this technique to quantify BTEX (benzene, toluene, ethylbenzenes, and xylenes), pinenes, naphthalene and 2-methoxyphenol (guaiacol) in urban air plumes at parts-per-billion by volume levels. Presented are several recent applications of MIMS-MS-MS for on-line environmental monitoring in atmospheric and aqueous environmental samples demonstrating laboratory, remote and mobile deployments. We also present the use of a thermally assisted MIMS interface for the direct measurement of polyaromatic hydrocarbons, alkylphenols, and other SVOCs in the low ppb range in aqueous environmental samples and discuss improvements in both the sensitivity and response times for selected SVOCs. The work presented in this paper represents significant improvements in field deployable mass spectrometric techniques, which can be applied to direct on-site analytical measurements of VOC and SVOCs in environmental samples.


Subject(s)
Air Pollutants/analysis , Mass Spectrometry/instrumentation , Mass Spectrometry/methods , Water Pollutants, Chemical/analysis , Membranes, Artificial , Polycyclic Aromatic Hydrocarbons/analysis , Reference Standards , Sensitivity and Specificity , Temperature , Time Factors , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...