Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 797, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35039503

ABSTRACT

A series of gallium arsenide bismide device layers covering a range of growth conditions are thoroughly probed by low-temperature, power-dependent photoluminescence measurements. The photoluminescence data is modelled using a localised state profile consisting of two Gaussians. Good agreement with the raw data is achieved for all layers whilst fixing the standard deviation values of the two Gaussians and constraining the band gap using X-ray diffraction data. The effects of growth temperature and bismuth beam equivalent pressure on the localised state distributions, and other model variables, are both shown to be linked to emission linewidth and device properties. It is concluded that bismuth rich surface conditions are preferable during growth in order to produce the narrowest emission linewidths with this material. These results also show how the growth mode of a gallium arsenide bismide layer can be inferred ex-situ from low-temperature photoluminescence measurements.

2.
Sci Rep ; 11(1): 7741, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33833263

ABSTRACT

The optimization of thermophotovoltaic (TPV) cell efficiency is essential since it leads to a significant increase in the output power. Typically, the optimization of In0.53Ga0.47As TPV cell has been limited to single variable such as the emitter thickness, while the effects of the variation in other design variables are assumed to be negligible. The reported efficiencies of In0.53Ga0.47As TPV cell mostly remain < 15%. Therefore, this work develops a multi-variable or multi-dimensional optimization of In0.53Ga0.47As TPV cell using the real coded genetic algorithm (RCGA) at various radiation temperatures. RCGA was developed using Visual Basic and it was hybridized with Silvaco TCAD for the electrical characteristics simulation. Under radiation temperatures from 800 to 2000 K, the optimized In0.53Ga0.47As TPV cell efficiency increases by an average percentage of 11.86% (from 8.5 to 20.35%) as compared to the non-optimized structure. It was found that the incorporation of a thicker base layer with the back-barrier layers enhances the separation of charge carriers and increases the collection of photo-generated carriers near the band-edge, producing an optimum output power of 0.55 W/cm2 (cell efficiency of 22.06%, without antireflection coating) at 1400 K radiation spectrum. The results of this work demonstrate the great potential to generate electricity sustainably from industrial waste heat and the multi-dimensional optimization methodology can be adopted to optimize semiconductor devices, such as solar cell, TPV cell and photodetectors.

3.
Opt Express ; 24(19): 21597-608, 2016 Sep 19.
Article in English | MEDLINE | ID: mdl-27661898

ABSTRACT

Simple, approximate formulas are developed to calculate the mean gain and excess noise factor for avalanche photodiodes using the dead-space multiplication theory in the regime of small multiplication width and high applied electric field. The accuracy of the approximation is investigated by comparing it to the exact numerical method using recursive coupled integral equations and it is found that it works for dead spaces up to 15% of the multiplication width, which is substantial. The approximation is also tested for real materials such as GaAs, InP and Si for various multiplication widths, and the results found are accurate within ∼ 15% of the actual noise, which is a significant improvement over the local-theory noise formula. The results obtained for the mean gain also confirm the recently reported relationship between experimentally determined local ionization coefficients and the enabled non-local ionization coefficients.

SELECTION OF CITATIONS
SEARCH DETAIL
...