Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
J Exp Zool B Mol Dev Evol ; 340(2): 182-196, 2023 03.
Article in English | MEDLINE | ID: mdl-34958528

ABSTRACT

The genitalia present some of the most rapidly evolving anatomical structures in the animal kingdom, possessing a variety of parts that can distinguish recently diverged species. In the Drosophila melanogaster group, the phallus is adorned with several processes, pointed outgrowths, that are similar in size and shape between species. However, the complex three-dimensional nature of the phallus can obscure the exact connection points of each process. Previous descriptions based upon adult morphology have primarily assigned phallic processes by their approximate positions in the phallus and have remained largely agnostic regarding their homology relationships. In the absence of clearly identified homology, it can be challenging to model when each structure first evolved. Here, we employ a comparative developmental analysis of these processes in eight members of the melanogaster species group to precisely identify the tissue from which each process forms. Our results indicate that adult phallic processes arise from three pupal primordia in all species. We found that in some cases the same primordia generate homologous structures whereas in other cases, different primordia produce phenotypically similar but remarkably non-homologous structures. This suggests that the same gene regulatory network may have been redeployed to different primordia to induce phenotypically similar traits. Our results highlight how traits diversify and can be redeployed, even at short evolutionary scales.


Subject(s)
Drosophila melanogaster , Drosophila , Male , Animals , Genitalia, Male/anatomy & histology , Biological Evolution , Genitalia
2.
Genetica ; 150(6): 343-353, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36242716

ABSTRACT

Quantitative genetics aims at untangling the genetic and environmental effects on phenotypic variation. Trait heritability, which summarizes the relative importance of genetic effects, is estimated at the intraspecific level, but theory predicts that heritability could influence long-term evolution of quantitative traits. The phylogenetic signal concept bears resemblance to heritability and it has often been called species-level heritability. Under certain conditions, such as trait neutrality or contribution to phylogenesis, within-species heritability and between-species phylogenetic signal should be correlated. Here, we investigate the potential relationship between these two concepts by examining the evolution of multiple morphological traits for which heritability has been estimated in Drosophila melanogaster. Specifically, we analysed 42 morphological traits in both sexes on a phylogeny inferred from 22 nuclear genes for nine species of the melanogaster subgroup. We used Pagel's λ as a measurement of phylogenetic signal because it is the least influenced by the number of analysed taxa. Pigmentation traits showed the strongest concordance with the phylogeny, but no correlation was found between phylogenetic signal and heritability estimates mined from the literature. We obtained data for multiple climatic variables inferred from the geographical distribution of each species. Phylogenetic regression of quantitative traits on climatic variables showed a significantly positive correlation with heritability. Convergent selection, the response to which depends on the trait heritability, may have led to the null association between phylogenetic signal and heritability for morphological traits in Drosophila. We discuss the possible causes of discrepancy between both statistics and caution against their confusion in evolutionary biology.


Subject(s)
Drosophila melanogaster , Drosophila , Female , Male , Animals , Drosophila melanogaster/genetics , Phylogeny , Phenotype , Drosophila/genetics , Pigmentation/genetics
3.
Ecol Evol ; 12(4): e8821, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35432924

ABSTRACT

Adaptive introgression is ubiquitous in animals, but experimental support for its role in driving speciation remains scarce. In the absence of conscious selection, admixed laboratory strains of Drosophila asymmetrically and progressively lose alleles from one parental species and reproductive isolation against the predominant parent ceases after 10 generations. Here, we selectively introgressed during 1 year light pigmentation genes of D. santomea into the genome of its dark sibling D. yakuba, and vice versa. We found that the pace of phenotypic change differed between the species and the sexes and identified through genome sequencing common as well as distinct introgressed loci in each species. Mating assays showed that assortative mating between introgressed flies and both parental species persisted even after 4 years (~60 generations) from the end of the selection. Those results indicate that selective introgression of as low as 0.5% of the genome can beget morphologically distinct and reproductively isolated strains, two prerequisites for the delimitation of new species. Our findings hence represent a significant step toward understanding the genome-wide dynamics of speciation-through-introgression.

4.
Curr Biol ; 32(1): 111-123.e5, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34788634

ABSTRACT

Genome-scale sequence data have invigorated the study of hybridization and introgression, particularly in animals. However, outside of a few notable cases, we lack systematic tests for introgression at a larger phylogenetic scale across entire clades. Here, we leverage 155 genome assemblies from 149 species to generate a fossil-calibrated phylogeny and conduct multilocus tests for introgression across 9 monophyletic radiations within the genus Drosophila. Using complementary phylogenomic approaches, we identify widespread introgression across the evolutionary history of Drosophila. Mapping gene-tree discordance onto the phylogeny revealed that both ancient and recent introgression has occurred across most of the 9 clades that we examined. Our results provide the first evidence of introgression occurring across the evolutionary history of Drosophila and highlight the need to continue to study the evolutionary consequences of hybridization and introgression in this genus and across the tree of life.


Subject(s)
Drosophila , Genome , Animals , Biological Evolution , Drosophila/genetics , Hybridization, Genetic , Phylogeny
5.
Ecol Evol ; 11(12): 7492-7506, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34188829

ABSTRACT

Male genitalia are usually extremely divergent between closely related species, but relatively constant within one species. Here we examine the effect of temperature on the shape of the ventral branches, a male genital structure involved in reproductive isolation, in the sister species Drosophila santomea and Drosophila yakuba. We designed a semi-automatic measurement machine learning pipeline that can reliably identify curvatures and landmarks based on manually digitized contours of the ventral branches. With this method, we observed that temperature does not affect ventral branches in D. yakuba but that in D. santomea ventral branches tend to morph into a D. yakuba-like shape at lower temperature. We found that male genitalia structures involved in reproductive isolation can be relatively variable within one species and can resemble the shape of closely related species' genitalia through plasticity to temperature. Our results suggest that reproductive isolation mechanisms can be dependent on the environmental context.

6.
Fly (Austin) ; 13(1-4): 51-64, 2019.
Article in English | MEDLINE | ID: mdl-31401934

ABSTRACT

Animal terminalia represent some of the most diverse and rapidly evolving structures in the animal kingdom, and for this reason have been a mainstay in the taxonomic description of species. The terminalia of Drosophila melanogaster, with its wide range of experimental tools, have recently become the focus of increased interest in the fields of development, evolution, and behavior. However, studies from different disciplines have often used discrepant terminologies for the same anatomical structures. Consequently, the terminology of genital parts has become a barrier to integrating results from different fields, rendering it difficult to determine what parts are being referenced. We formed a consortium of researchers studying the genitalia of D. melanogaster to help establish a set of naming conventions. Here, we present a detailed visual anatomy of male genital parts, including a list of synonymous terms, and suggest practices to avoid confusion when referring to anatomical parts in future studies. The goal of this effort is to facilitate interdisciplinary communication and help newcomers orient themselves within the exciting field of Drosophila genitalia.


Subject(s)
Drosophila melanogaster/anatomy & histology , Genitalia, Male/anatomy & histology , Terminology as Topic , Animals , Male
7.
PLoS Genet ; 14(11): e1007770, 2018 11.
Article in English | MEDLINE | ID: mdl-30388103

ABSTRACT

Y chromosomes are widely believed to evolve from a normal autosome through a process of massive gene loss (with preservation of some male genes), shaped by sex-antagonistic selection and complemented by occasional gains of male-related genes. The net result of these processes is a male-specialized chromosome. This might be expected to be an irreversible process, but it was found in 2005 that the Drosophila pseudoobscura Y chromosome was incorporated into an autosome. Y chromosome incorporations have important consequences: a formerly male-restricted chromosome reverts to autosomal inheritance, and the species may shift from an XY/XX to X0/XX sex-chromosome system. In order to assess the frequency and causes of this phenomenon we searched for Y chromosome incorporations in 400 species from Drosophila and related genera. We found one additional large scale event of Y chromosome incorporation, affecting the whole montium subgroup (40 species in our sample); overall 13% of the sampled species (52/400) have Y incorporations. While previous data indicated that after the Y incorporation the ancestral Y disappeared as a free chromosome, the much larger data set analyzed here indicates that a copy of the Y survived as a free chromosome both in montium and pseudoobscura species, and that the current Y of the pseudoobscura lineage results from a fusion between this free Y and the neoY. The 400 species sample also showed that the previously suggested causal connection between X-autosome fusions and Y incorporations is, at best, weak: the new case of Y incorporation (montium) does not have X-autosome fusion, whereas nine independent cases of X-autosome fusions were not followed by Y incorporations. Y incorporation is an underappreciated mechanism affecting Y chromosome evolution; our results show that at least in Drosophila it plays a relevant role and highlight the need of similar studies in other groups.


Subject(s)
Drosophila/classification , Drosophila/genetics , Y Chromosome/genetics , Animals , Evolution, Molecular , Female , Gene Duplication , Genes, Insect , Genetic Linkage , Male , Models, Genetic , Phylogeny , Selection, Genetic , Species Specificity , Translocation, Genetic , X Chromosome/genetics
8.
Curr Biol ; 28(21): 3450-3457.e13, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30344115

ABSTRACT

Diverse traits often covary between species [1-3]. The possibility that a single mutation could contribute to the evolution of several characters between species [3] is rarely investigated as relatively few cases are dissected at the nucleotide level. Drosophila santomea has evolved additional sex comb sensory teeth on its legs and has lost two sensory bristles on its genitalia. We present evidence that a single nucleotide substitution in an enhancer of the scute gene contributes to both changes. The mutation alters a binding site for the Hox protein Abdominal-B in the developing genitalia, leading to bristle loss, and for another factor in the developing leg, leading to bristle gain. Our study suggests that morphological evolution between species can occur through a single nucleotide change affecting several sexually dimorphic traits. VIDEO ABSTRACT.


Subject(s)
Biological Evolution , Drosophila Proteins/genetics , Drosophila/anatomy & histology , Drosophila/genetics , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Animals , Binding Sites , Drosophila Proteins/metabolism , Evolution, Molecular , Genitalia, Male/anatomy & histology , Homeodomain Proteins/metabolism , Male , Mutation , Nucleotides/genetics
9.
J Therm Biol ; 72: 118-126, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29496004

ABSTRACT

Thoracic and abdominal pigmentation were measured in Drosophila melanogaster under a cold circadian stress (8-25 °C) and a heat one (18-33 °C) and compared to the phenotypes observed under similar but constant temperatures of 17 or 25 °C respectively. An isofemale line design permitted to submit each line (full sibs) to the four thermal regimes. Under cold stress, the pigmentation was similar to the value observed at constant 25 °C, suggesting a kind of functional dominance of the high temperature phase. In all cases, thermal stresses increased the individual environmental variance, i.e., increased the developmental instability. Genetic correlations between lines were not modified by the stresses but provided some unexpected and surprising results, which should be confirmed by further investigations: for example, negative correlations between pigmentation and body size or sternopleural bristle number. As a whole, the data do not confirm the hypothesis that under stressing conditions a hidden genetic variability could be unravelled, permitting a faster adaptation to environmental changes.


Subject(s)
Cold-Shock Response , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Heat-Shock Response , Pigmentation , Animals , Female , Genetic Variation , Phenotype
10.
Mol Biol Evol ; 35(2): 312-334, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29048573

ABSTRACT

Reproductive isolation is an intrinsic aspect of species formation. For that reason, the identification of the precise isolating traits, and the rates at which they evolve, is crucial to understanding how species originate and persist. Previous work has measured the rates of evolution of prezygotic and postzygotic barriers to gene flow, yet no systematic analysis has studied the rates of evolution of postmating-prezygotic (PMPZ) barriers. We measured the magnitude of two barriers to gene flow that act after mating occurs but before fertilization. We also measured the magnitude of a premating barrier (female mating rate in nonchoice experiments) and two postzygotic barriers (hybrid inviability and hybrid sterility) for all pairwise crosses of all nine known extant species within the melanogaster subgroup. Our results indicate that PMPZ isolation evolves faster than hybrid inviability but slower than premating isolation. Next, we partition postzygotic isolation into different components and find that, as expected, hybrid sterility evolves faster than hybrid inviability. These results lend support for the hypothesis that, in Drosophila, reproductive isolation mechanisms (RIMs) that act early in reproduction (or in development) tend to evolve faster than those that act later in the reproductive cycle. Finally, we tested whether there was evidence for reinforcing selection at any RIM. We found no evidence for generalized evolution of reproductive isolation via reinforcement which indicates that there is no pervasive evidence of this evolutionary process. Our results indicate that PMPZ RIMs might have important evolutionary consequences in initiating speciation and in the persistence of new species.


Subject(s)
Drosophila/genetics , Reproductive Isolation , Animals , Drosophila/growth & development , Female , Hybridization, Genetic , Male , Phylogeny
11.
Genetica ; 145(3): 307-317, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28429244

ABSTRACT

Metric (e.g., body size) and meristic (e.g., bristle number) traits are of general use in quantitative genetic studies, and the phenotypic variance is subdivided into a genetic and a non-genetic environmental component. The non-genetic variance may have two origins: a common garden effect between individuals and a developmental instability within the same individual. Developmental instability may be studied by considering the fluctuating asymmetry (FA) between the two sides of the body. The isofemale line technique is a convenient method for investigating the architecture of natural populations but has been rarely implemented for investigating FA. In this paper, we use this experimental design for analyzing four meristic traits in eight populations of the cosmopolitan Zaprionus indianus. A study of the correlation between left and right side of each line revealed that almost 90% of the variability was due to a developmental noise, while a much higher correlation among the means of the lines from the same population was observed. A slight trend toward a directional asymmetry was observed: more thoracic bristles on the left side. Four kinds of indices, scaled or non-scaled to the mean were used for comparing the different traits. Unscaled values (mean absolute values or standard deviation of each line) revealed a linear increase with the means. Interestingly the results of ovariole number were included in the same regression. With the scaled indices (mean absolute divided by each individual value or stadard deviation devided by the mean), the differences among traits were considerably decreased, but still remained significant. The mean FA of the various traits were not correlated, suggesting that each trait harbors its own developmental stability. The CVs of FA were high with a magnitude similar to those of the trait themselves, slightly less than 10%. Finally, even with the isofemale line design, which is a powerful means for unravelling slight genetic variations, we did not to find any clear indication of a genetic component of FA under the optimal environmental conditions used in this study.


Subject(s)
Body Size/genetics , Drosophilidae/genetics , Genetic Variation , Animals , Drosophilidae/growth & development , Quantitative Trait, Heritable
12.
Evol Lett ; 1(2): 73-85, 2017 Jun.
Article in English | MEDLINE | ID: mdl-30283640

ABSTRACT

Specialization onto different host plants has been hypothesized to be a major driver of diversification in insects, and traits controlling olfaction have been shown to play a fundamental role in host preferences. A diverse set of olfactory genes control olfactory traits in insects, and it remains unclear whether specialization onto different hosts is likely to involve a nonrandom subset of these genes. Here, we test the role of olfactory genes in a novel case of specialization in Drosophila orena. We report the first population-level sample of D. orena on the West African island of Bioko, since its initial collection in Cameroon in 1975, and use field experiments and behavioral assays to show that D. orena has evolved a strong preference for waterberry (Syzygium staudtii). We then show that a nonrandom subset of genes controlling olfaction--those controlling odorant-binding and chemosensory proteins--have an enriched signature of positive selection relative to the rest of the D. orena genome. By comparing signatures of positive selection on olfactory genes between D. orena and its sister species, D. erecta we show that odorant-binding and chemosensory have evidence of positive selection in both species; however, overlap in the specific genes with evidence of selection in these two classes is not greater than expected by chance. Finally, we use quantitative complementation tests to confirm a role for seven olfactory loci in D. orena's preference for waterberry fruit. Together, our results suggest that D. orena and D. erecta have specialized onto different host plants through convergent evolution at the level of olfactory gene family, but not at specific olfactory genes.

13.
Ecol Evol ; 6(16): 5893-906, 2016 08.
Article in English | MEDLINE | ID: mdl-27547363

ABSTRACT

Understanding the physiological and genetic basis of growth and body size variation has wide-ranging implications, from cancer and metabolic disease to the genetics of complex traits. We examined the evolution of body and wing size in high-altitude Drosophila melanogaster from Ethiopia, flies with larger size than any previously known population. Specifically, we sought to identify life history characteristics and cellular mechanisms that may have facilitated size evolution. We found that the large-bodied Ethiopian flies laid significantly fewer but larger eggs relative to lowland, smaller-bodied Zambian flies. The highland flies were found to achieve larger size in a similar developmental period, potentially aided by a reproductive strategy favoring greater provisioning of fewer offspring. At the cellular level, cell proliferation was a strong contributor to wing size evolution, but both thorax and wing size increases involved important changes in cell size. Nuclear size measurements were consistent with elevated somatic ploidy as an important mechanism of body size evolution. We discuss the significance of these results for the genetic basis of evolutionary changes in body and wing size in Ethiopian D. melanogaster.

14.
Curr Biol ; 26(18): 2412-2422, 2016 09 26.
Article in English | MEDLINE | ID: mdl-27546577

ABSTRACT

Sex-limited polymorphisms are an intriguing form of sexual dimorphism that offer unique opportunities to reconstruct the evolutionary changes that decouple male and female traits encoded by a shared genome. We investigated the genetic basis of a Mendelian female-limited color dimorphism (FLCD) that segregates in natural populations of more than 20 species of the Drosophila montium subgroup. In these species, females have alternative abdominal color morphs, light and dark, whereas males have only one color morph in each species. A comprehensive molecular phylogeny of the montium subgroup supports multiple origins of FLCD. Despite this, we mapped FLCD to the same locus in four distantly related species-the transcription factor POU domain motif 3 (pdm3), which acts as a repressor of abdominal pigmentation in D. melanogaster. In D. serrata, FLCD maps to a structural variant in the first intron of pdm3; however, this variant is not found in the three other species-D. kikkawai, D. leontia, and D. burlai-and sequence analysis strongly suggests the pdm3 alleles responsible for FLCD originated independently at least three times. We propose that cis-regulatory changes in pdm3 form sexually dimorphic and monomorphic alleles that segregate within species and are preserved, at least in one species, by structural variation. Surprisingly, pdm3 has not been implicated in the evolution of sex-specific pigmentation outside the montium subgroup, suggesting that the genetic paths to sexual dimorphism may be constrained within a clade but variable across clades.


Subject(s)
Biological Evolution , Drosophila Proteins/genetics , Drosophila/physiology , Gene Expression Regulation , POU Domain Factors/genetics , Pigmentation/genetics , Animals , Color , Drosophila/classification , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/metabolism , Female , POU Domain Factors/metabolism , Phenotype , Phylogeny , Sequence Alignment , Sequence Analysis, DNA , Species Specificity
15.
Proc Natl Acad Sci U S A ; 113(17): 4771-6, 2016 Apr 26.
Article in English | MEDLINE | ID: mdl-27044093

ABSTRACT

Recurrent specialization on similar host plants offers a unique opportunity to unravel the evolutionary and genetic mechanisms underlying dietary shifts. Recent studies have focused on ecological races belonging to the same species, but it is hard in many cases to untangle the role of adaptive introgression versus distinct mutations in facilitating recurrent evolution. We discovered on the island of Mayotte a population of the generalist fly Drosophila yakuba that is strictly associated with noni (Morinda citrifolia). This case strongly resembles Drosophila sechellia, a genetically isolated insular relative of D. yakuba whose intensely studied specialization on toxic noni fruits has always been considered a unique event in insect evolution. Experiments revealed that unlike mainland D. yakuba strains, Mayotte flies showed strong olfactory attraction and significant toxin tolerance to noni. Island females strongly discriminated against mainland males, suggesting that dietary adaptation has been accompanied by partial reproductive isolation. Population genomic analysis indicated a recent colonization (∼29 kya), at a time when year-round noni fruits may have presented a predictable resource on the small island, with ongoing migration after colonization. This relatively recent time scale allowed us to search for putatively adaptive loci based on genetic variation. Strong signals of genetic differentiation were found for several detoxification genes, including a major toxin tolerance locus in D. sechellia Our results suggest that recurrent evolution on a toxic resource can involve similar historical events and common genetic bases, and they establish an important genetic system for the study of early stages of ecological specialization and speciation.


Subject(s)
Drosophila/genetics , Fruit/toxicity , Animals , Islands , Morinda/toxicity , Smell/genetics
16.
Nat Commun ; 7: 10400, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26778363

ABSTRACT

Dimorphic traits are ubiquitous in nature, but the evolutionary factors leading to dimorphism are largely unclear. We investigate a potential case of sexual mimicry in Drosophila erecta, in which females show contrasting resemblance to males. We map the genetic basis of this sex-limited colour dimorphism to a region containing the gene tan. We find a striking signal of ancient balancing selection at the 'male-specific enhancer' of tan, with exceptionally high sequence divergence between light and dark alleles, suggesting that this dimorphism has been adaptively maintained for millions of years. Using transgenic reporter assays, we confirm that these enhancer alleles encode expression differences that are predicted to generate this pigmentation dimorphism. These results are compatible with the theoretical prediction that divergent phenotypes maintained by selection can evolve simple genetic architectures.


Subject(s)
Drosophila/physiology , Pigmentation/physiology , Sex Characteristics , Animals , Biological Evolution , Drosophila/classification , Drosophila/genetics , Female , Male , Pigmentation/genetics , Selection, Genetic
17.
Fly (Austin) ; 6(4): 298-302, 2012.
Article in English | MEDLINE | ID: mdl-23222006

ABSTRACT

Thirteen drosophilid species belonging to seven genera and two subfamilies are reported from three coral islands (namely Europa, Juan de Nova and Glorioso) that belong to the Scattered Islands in the Indian Ocean. Five species are cosmopolitan and five are African. Three are endemic to the insular Western Indian Ocean, including a presumably new Scaptodrosophila species. On the island of Juan de Nova, most captured flies had pollinia attached to the bases of their proboscis. DNA analysis using the rbcl gene revealed that these pollinia belong to the genus Leptadenia (Apocynaceae), of which a single species L. madagascariensis, endemic in Madagascar and Comoros, is present in this island. This is the first reported association between this plant and drosophilids.


Subject(s)
Apocynaceae , Drosophilidae/physiology , Animals , Behavior, Animal , DNA, Plant/chemistry , Drosophilidae/classification , Pollen/classification , Pollen/genetics , Pollination , Ribulose-Bisphosphate Carboxylase/chemistry
18.
Evolution ; 66(11): 3377-89, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23106704

ABSTRACT

Species distributions are often constrained by climatic tolerances that are ultimately determined by evolutionary history and/or adaptive capacity, but these factors have rarely been partitioned. Here, we experimentally determined two key climatic niche traits (desiccation and cold resistance) for 92-95 Drosophila species and assessed their importance for geographic distributions, while controlling for acclimation, phylogeny, and spatial autocorrelation. Employing an array of phylogenetic analyses, we documented moderate-to-strong phylogenetic signal in both desiccation and cold resistance. Desiccation and cold resistance were clearly linked to species distributions because significant associations between traits and climatic variables persisted even after controlling for phylogeny. We used different methods to untangle whether phylogenetic signal reflected phylogenetically related species adapted to similar environments or alternatively phylogenetic inertia. For desiccation resistance, weak phylogenetic inertia was detected; ancestral trait reconstruction, however, revealed a deep divergence that could be traced back to the genus level. Despite drosophilids' high evolutionary potential related to short generation times and high population sizes, cold resistance was found to have a moderate-to-high level of phylogenetic inertia, suggesting that evolutionary responses are likely to be slow. Together these findings suggest species distributions are governed by evolutionarily conservative climate responses, with limited scope for rapid adaptive responses to future climate change.


Subject(s)
Animal Distribution , Cold-Shock Response , Dehydration , Drosophilidae/physiology , Acclimatization , Animals , Biological Evolution , Drosophilidae/classification , Drosophilidae/genetics , Female , Male , Phylogeny , Species Specificity
19.
Fly (Austin) ; 5(4): 285-90, 2011.
Article in English | MEDLINE | ID: mdl-22041577

ABSTRACT

Drosophila suma is a flower breeding species widespread in the Afrotropical region. We describe an original and so far unique feeding behavior in that species. Strong black spines on the fore tarsus of both sexes are used for scratching the surface of the petals: the juice pouring out from the scratched cells is immediately ingested and this might be the only source of food. D. suma has been investigated on two kinds of flowers, Ipomoea and Crinum. In spite of the very different shape and color of these flowers, the feeding behavior of the flies is the same. Various morphological and anatomical adaptations are described, especially those related to laying a few very big eggs. The taxonomic position of D. suma has long remained and still is elusive. Further taxonomic and phylogenetic investigations would thus be needed to understand how adaptation to flower breeding has evolved.


Subject(s)
Drosophila/physiology , Animals , Drosophila/anatomy & histology , Extremities/anatomy & histology , Extremities/physiology , Feeding Behavior , Female , Flowers , Male
20.
J Genet ; 90(2): 295-302, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21869478

ABSTRACT

Thirty isofemale lines collected in three different years from the same wild French population were grown at seven different temperatures (12-31 °C). Two linear measures, wing and thorax length, were taken on 10 females and 10 males of each line at each temperature, also enabling the calculation of the wing/thorax (W/T) ratio, a shape index related to wing loading. Genetic correlations were calculated using family means. The W-T correlation was independent of temperature and on average, 0.75. For each line, characteristic values of the temperature reaction norm were calculated, i.e. maximum value, temperature of maximum value and curvature. Significant negative correlations were found between curvature and maximum value or temperature of maximum value. Sexual dimorphism was analysed by considering either the correlation between sexes or the female/male ratio. Female-male correlation was on average 0.75 at the within line, within temperature level but increased up to 0.90 when all temperatures were averaged for each line. The female-male ratio was genetically variable among lines but without any temperature effect. For the female/male ratio, heritability (intraclass correlation) was about 0.20 and evolvability (genetic coefficient of variation) close to 1. Although significant, these values are much less than for the traits themselves. Phenotypic plasticity of sexual dimorphism revealed very similar reaction norms for wing and thorax length, i.e. a monotonically increasing sigmoid curve from about 1.11 up to 1.17. This shows that the males are more sensitive to a thermal increase than females. In contrast, the W/T ratio was almost identical in both sexes, with only a very slight temperature effect.


Subject(s)
Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Sex Characteristics , Analysis of Variance , Animals , Body Weights and Measures , Female , Genetic Variation , Male , Phenotype , Temperature , Wings, Animal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...