Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
J Grid Comput ; 20(4): 35, 2022.
Article in English | MEDLINE | ID: mdl-36246518

ABSTRACT

In scientific collaboration, data sharing, the exchange of ideas and results are essential to knowledge construction and the development of science. Hence, we must guarantee interoperability, privacy, traceability (reinforcing transparency), and trust. Provenance has been widely recognized for providing a history of the steps taken in scientific experiments. Consequently, we must support traceability, assisting in scientific results' reproducibility. One of the technologies that can enhance trust in collaborative scientific experimentation is blockchain. This work proposes an architecture, named BlockFlow, based on blockchain, provenance, and cloud infrastructure to bring trust and traceability in the execution of collaborative scientific experiments. The proposed architecture is implemented on Hyperledger, and a scenario about the genomic sequencing of the SARS-CoV-2 coronavirus is used to evaluate the architecture, discussing the benefits of providing traceability and trust in collaborative scientific experimentation. Furthermore, the architecture addresses the heterogeneity of shared data, facilitating interpretation by geographically distributed researchers and analysis of such data. Through a blockchain-based architecture that provides support on provenance and blockchain, we can enhance data sharing, traceability, and trust in collaborative scientific experiments.

2.
J Biomed Inform ; 56: 239-64, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26079262

ABSTRACT

CONTEXT: Most specialized users (scientists) that use bioinformatics applications do not have suitable training on software development. Software Product Line (SPL) employs the concept of reuse considering that it is defined as a set of systems that are developed from a common set of base artifacts. In some contexts, such as in bioinformatics applications, it is advantageous to develop a collection of related software products, using SPL approach. If software products are similar enough, there is the possibility of predicting their commonalities, differences and then reuse these common features to support the development of new applications in the bioinformatics area. OBJECTIVES: This paper presents the PL-Science approach which considers the context of SPL and ontology in order to assist scientists to define a scientific experiment, and to specify a workflow that encompasses bioinformatics applications of a given experiment. This paper also focuses on the use of ontologies to enable the use of Software Product Line in biological domains. METHOD: In the context of this paper, Scientific Software Product Line (SSPL) differs from the Software Product Line due to the fact that SSPL uses an abstract scientific workflow model. This workflow is defined according to a scientific domain and using this abstract workflow model the products (scientific applications/algorithms) are instantiated. RESULTS: Through the use of ontology as a knowledge representation model, we can provide domain restrictions as well as add semantic aspects in order to facilitate the selection and organization of bioinformatics workflows in a Scientific Software Product Line. The use of ontologies enables not only the expression of formal restrictions but also the inferences on these restrictions, considering that a scientific domain needs a formal specification. CONCLUSIONS: This paper presents the development of the PL-Science approach, encompassing a methodology and an infrastructure, and also presents an approach evaluation. This evaluation presents case studies in bioinformatics, which were conducted in two renowned research institutions in Brazil.


Subject(s)
Computational Biology/instrumentation , Computational Biology/methods , Software , Algorithms , Brazil , Cloud Computing , Cluster Analysis , Databases, Factual , Internet , Observer Variation , Programming Languages , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...