Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 46(9): 322, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012612

ABSTRACT

Efficient treatment of textile dyeing wastewater can be achieved through electrocoagulation (EC) with minimal sludge production; however, the selection of the appropriate electrode is essential in lowering overall costs. Also, the reuse of the treated aqueous azo dye solution from this process has not been explored in detail. With these objectives, this study aims to treat synthetic azo dye solutions and achieve high colour removal efficiency (CRE%) using similar (Ti-Ti) and dissimilar (Ti-Cu) metal electrodes through EC with an attempt to reduce the cost. The aqueous Coralene Rubine GFL azo dye was used to examine the efficiency and cost of the EC process. X-Ray Photoelectron Spectroscopy was used to study the EC mechanism, while High Performance Liquid Chromatography was used to analyse the degradation of the dye and the formation of intermediate compounds. The concentration of metal ions in the treated dye solution was quantified using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), with Ti-Ti treated solution having 14.20 mg/L concentration of Ti and Ti-Cu treated solution having 0.078 mg/L of Ti and 0.001 mg/L of Cu, respectively. Colour removal efficiency of 99.49% was obtained for both electrode sets, with a lower operating time and voltage for dissimilar metal combination. Ecotoxicity studies showed negligible toxicity of Ti-Cu treated dye samples compared to untreated solutions. Survival rate, protein estimation, and catalase activity was used to validate the treatment method's efficacy. The study found that the dissimilar electrode material exhibited reduced toxicity due to the presence of heavy metals below the permissible limit.


Subject(s)
Electrolysis , Electrodes , Coloring Agents/chemistry , Coloring Agents/economics , Coloring Agents/toxicity , Electrolysis/methods , Hydrogen-Ion Concentration , Spectrophotometry , Chromatography, High Pressure Liquid , Animals , Zebrafish , Titanium/chemistry , Copper/chemistry
2.
Environ Monit Assess ; 196(2): 177, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243084

ABSTRACT

The entire ecology is contaminated by the synthetic dyes that are widely utilised in the textile industries. They can be handled using a variety of technologies, but an eco-friendly method called electrocoagulation has been used to prevent additional contamination. Textile wastewater containing disperse dyes are successfully treated in Electrocoagulation (EC) utilizing Al, Fe, and Stainless Steel (SS), but it is not cost effective, also the treated water contains certain mg/L of the metals used, along with dye components, which obstructs the reuse of the same. The effects of initial pH, applied voltage, dye concentration, supporting electrolyte, and treatment time on the colour removal efficiency (CRE) and consumption of energy were examined in EC process followed by activated charcoal filtration (hybrid process) with a monopolar Ti/Ti electrode on the remediation of aqueous solution of Dispersive Blue-79 (dye 3G). The maximum CREobtained was 99.4%, chemical oxygen demand (COD) 93%, and biological oxygen demand (BOD) 85%, under the following optimized operating conditions, applied voltage 15 V, pH = 7, concentration of dye, electrolyte 110 mg/L, 0.2 g/L and time = 15 min. The overall operating cost for the treatment of aqueous dye 3G was 0.455US/m3. The mechanism of EC was studied using XPS analysis in the sludge obtained. For the purpose of the reuse, FTIR, AAS, and ICP-OES analysis were done and compared with the aqueous dye 3G, after EC and hybrid process to ensure the maximum removal of the degraded dye components and metal. ICP-OES results showed that there were no traces of metal in the treated aqueous dye 3G using this method. Throughout the study, the experimental outcomes indicated that the hybrid process upgraded the quality of the treated aqueous dye 3G.


Subject(s)
Azo Compounds , Titanium , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Environmental Monitoring , Metals/analysis , Coloring Agents/analysis , Electrocoagulation , Water/analysis , Electrodes , Waste Disposal, Fluid/methods , Industrial Waste/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...