Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 56(16): 11225-11235, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35877386

ABSTRACT

Mercury pollution is primarily emitted to the atmosphere, and atmospheric transport and chemical processes determine its fate in the environment, but scientific understanding of atmospheric mercury chemistry is clouded in uncertainty. Mercury oxidation by atomic bromine in the Arctic and the upper atmosphere is well established, but less is understood about oxidation pathways in conditions of anthropogenic photochemical smog. Many have observed rapid increases in oxidized mercury under polluted conditions, but it has not been clearly demonstrated that these increases are the result of local mercury oxidation. We measured elemental and oxidized mercury in an area that experienced abundant photochemical activity (ozone >100 ppb) during winter inversion (i.e., cold air pools) conditions that restricted entrainment of air from the oxidized mercury-rich upper atmosphere. Under these conditions, oxidized mercury concentrations decreased day-upon-day, even as ozone and other pollutants increased dramatically. A box model that incorporated rapid kinetics for reactions of elemental mercury with ozone and OH radical overestimated observed oxidized mercury, while incorporation of slower, more widely accepted reaction rates did not. Our results show that rapid gas-phase mercury oxidation by ozone and OH in photochemical smog is unlikely.


Subject(s)
Air Pollutants , Mercury , Ozone , Air Pollutants/analysis , Atmosphere , Mercury/analysis , Ozone/analysis , Seasons , Smog
2.
Proc Natl Acad Sci U S A ; 117(46): 28640-28644, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33139542

ABSTRACT

Urban outdoor air pollution in the developing world, mostly due to particulate matter with diameters smaller than 2.5 µm (PM2.5), has been highlighted in recent years. It leads to millions of premature deaths. Outdoor air pollution has also been viewed mostly as an urban problem. We use satellite-derived demarcations to parse India's population into urban and nonurban regions, which agrees with the census data. We also use the satellite-derived surface PM2.5 levels to calculate the health impacts in the urban and nonurban regions. We show that outdoor air pollution is just as severe in nonurban regions as in the urban regions of India, with implications to monitoring, regulations, health, and policy.


Subject(s)
Air Pollution/statistics & numerical data , Mortality , Particulate Matter/adverse effects , Rural Population/statistics & numerical data , Urban Population/statistics & numerical data , Air Pollution/adverse effects , Cities , Humans , India , Satellite Imagery
3.
Geohealth ; 3(1): 2-10, 2019 Jan.
Article in English | MEDLINE | ID: mdl-32159019

ABSTRACT

The annual premature mortality in India attributed to exposure to ambient particulate matter (PM2.5) exceeds 1 million (Cohen et al., 2017, https://doi.org/10.1016/S0140-6736(17)30505-6). Studies have estimated sector-specific premature mortality from ambient PM2.5 exposure in India and shown residential energy use is the dominant contributing sector. In this study, we estimate the contribution of PM2.5 and premature mortality from six regions of India in 2012 using the global chemical-transport model. We calculate how premature mortality in India is determined by the transport of pollution from different regions. Of the estimated 1.1 million annual premature deaths from PM2.5 in India, about ~60% was from anthropogenic pollutants emitted from within the region in which premature mortality occurred, ~19% was from transport of anthropogenic pollutants between different regions within India, ~16% was due to anthropogenic pollutants emitted outside of India, and ~4% was associated with natural PM2.5 sources. The emissions from Indo Gangetic Plain contributed to ~46% of total premature mortality over India, followed by Southern India (13%). Indo Gangetic Plain also contributed (~8%) to the most premature mortalities in other regions of India through transport. More than 50% of the premature mortality in Northern, Eastern, Western, and Central India was due to transport of PM2.5 from regions outside of these individual regions. Our results indicate that reduction in anthropogenic emissions over India, as well as its neighboring regions, will be required to reduce the health impact of ambient PM2.5 in India.

SELECTION OF CITATIONS
SEARCH DETAIL
...