Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 271
Filter
1.
J Crit Care ; 83: 154854, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996499

ABSTRACT

RATIONALE: The positive end-expiratory pressure (PEEP) strategy in patients with coronavirus 2019 (COVID-19) acute respiratory distress syndrome (ARDS) remains debated. Most studies originate from the initial waves of the pandemic. Here we aimed to assess the impact of high PEEP/low FiO2 ventilation on outcomes during the second wave in the Netherlands. METHODS: Retrospective observational study of invasively ventilated COVID-19 patients during the second wave. Patients were categorized based on whether they received high PEEP or low PEEP ventilation according to the ARDS Network tables. The primary outcome was ICU mortality, and secondary outcomes included hospital and 90-day mortality, duration of ventilation and length of stay, and the occurrence of kidney injury. Propensity matching was performed to correct for factors with a known relationship to ICU mortality. RESULTS: This analysis included 790 COVID-ARDS patients. At ICU discharge, 32 (22.5%) out of 142 high PEEP patients and 254 (39.2%) out of 848 low PEEP patients had died (HR 0.66 [0.46-0.96]; P = 0.03). High PEEP was linked to improved secondary outcomes. Matched analysis did not change findings. CONCLUSIONS: High PEEP ventilation was associated with improved ICU survival in patients with COVID-ARDS.

3.
J Chem Phys ; 160(17)2024 May 07.
Article in English | MEDLINE | ID: mdl-38748015

ABSTRACT

New data are presented on the resonant Auger decay of iodobenzene (C6H5I) in the region of the I 4d-1 ionization threshold. The excited molecules decay by participator and spectator processes to populate single-hole valence states and two-hole, one-particle excited states of the cation, providing new information on the structure of C6H5I+. Excitation of dissociative C6H5I (I 4d5/2,3/2-1)σ* resonances can, in principle, result in ultrafast dissociation to C6H5 + I** and the subsequent autoionization of I**, but no evidence for this process is observed. The results are compared with our recent study of the resonant Auger decay of methyl iodide (CH3I).

4.
Phys Chem Chem Phys ; 26(21): 15130-15142, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38525924

ABSTRACT

High-resolution carbon K-edge X-ray photoelectron, X-ray absorption, non-resonant and resonant Auger spectra are presented of gas phase trans-1,3-butadiene alongside a detailed theoretical analysis utilising nuclear ensemble approaches and vibronic models to simulate the spectroscopic observables. The resonant Auger spectra recorded across the first pre-edge band reveal a complex evolution of different electronic states which remain relatively well-localised on the edge or central carbon sites. The results demonstrate the sensitivity of the resonant Auger observables to the weighted contributions from multiple electronic states. The gradually evolving spectral features can be accurately and feasibly simulated within nuclear ensemble methods and interpreted with the population analysis.

5.
J Am Chem Soc ; 146(6): 4134-4143, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38317439

ABSTRACT

Identifying multiple rival reaction products and transient species formed during ultrafast photochemical reactions and determining their time-evolving relative populations are key steps toward understanding and predicting photochemical outcomes. Yet, most contemporary ultrafast studies struggle with clearly identifying and quantifying competing molecular structures/species among the emerging reaction products. Here, we show that mega-electronvolt ultrafast electron diffraction in combination with ab initio molecular dynamics calculations offer a powerful route to determining time-resolved populations of the various isomeric products formed after UV (266 nm) excitation of the five-membered heterocyclic molecule 2(5H)-thiophenone. This strategy provides experimental validation of the predicted high (∼50%) yield of an episulfide isomer containing a strained three-membered ring within ∼1 ps of photoexcitation and highlights the rapidity of interconversion between the rival highly vibrationally excited photoproducts in their ground electronic state.

6.
J Chem Phys ; 160(7)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38375906

ABSTRACT

Resonant Auger processes provide a unique perspective on electronic interactions and excited vibrational and electronic states of molecular ions. Here, new data are presented on the resonant Auger decay of excited CH3I in the region just below the I 4d-1 ionization threshold. The resonances include the Rydberg series converging to the five spin-orbit and ligand-field split CH3I (I 4d-1) thresholds, as well as resonances corresponding to excitation from the I 4d5/2,3/2 orbitals into the σ* lowest unoccupied molecular orbital. This study focuses on participator decay that populates the lowest lying states of CH3I+, in particular, the X̃2E3/2 and 2E1/2 states, and on spectator decay that populates the lowest-lying (CH3I2+)σ* states of CH3I+. The CH3I (I 4d-1)σ* resonances are broad, and dissociation to CH3 + I competes with the autoionization of the core-excited states. Auger decay as the molecule dissociates produces a photoelectron spectrum with a long progression (up to v3+ ∼ 25) in the C-I stretching mode of the X̃2E3/2 and 2E1/2 states, providing insights into the shape of the dissociative core-excited surface. The observed spectator decay processes indicate that CH3I+ is formed on the repulsive wall of the lower-lying (CH3I2+)σ* potentials, and the photon-energy dependence of the processes provides insights into the relative slopes of the (4d-1)σ* and (CH3I2+)σ* potential surfaces. Data are also presented for the spectator decay of higher lying CH3I (I 4d-1)nl Rydberg resonances. Photoelectron angular distributions for the resonant Auger processes provide additional information that helps distinguish these processes from the direct ionization signal.

7.
J Chem Phys ; 160(6)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38349638

ABSTRACT

The absolute photoabsorption cross sections of norbornadiene (NBD) and quadricyclane (QC), two isomers with chemical formula C7H8 that are attracting much interest for solar energy storage applications, have been measured from threshold up to 10.8 eV using the Fourier transform spectrometer at the SOLEIL synchrotron radiation facility. The absorption spectrum of NBD exhibits some sharp structure associated with transitions into Rydberg states, superimposed on several broad bands attributable to valence excitations. Sharp structure, although less pronounced, also appears in the absorption spectrum of QC. Assignments have been proposed for some of the absorption bands using calculated vertical transition energies and oscillator strengths for the electronically excited states of NBD and QC. Natural transition orbitals indicate that some of the electronically excited states in NBD have a mixed Rydberg/valence character, whereas the first ten excited singlet states in QC are all predominantly Rydberg in the vertical region. In NBD, a comparison between the vibrational structure observed in the experimental 11B1-11A1 (3sa1 ← 5b1) band and that predicted by Franck-Condon and Herzberg-Teller modeling has necessitated a revision of the band origin and of the vibrational assignments proposed previously. Similar comparisons have encouraged a revision of the adiabatic first ionization energy of NBD. Simulations of the vibrational structure due to excitation from the 5b2 orbital in QC into 3p and 3d Rydberg states have allowed tentative assignments to be proposed for the complex structure observed in the absorption bands between ∼5.4 and 7.0 eV.

8.
Nat Chem ; 16(4): 499-505, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38307994

ABSTRACT

The light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations. We identify two competing pathways by which electronically excited quadricyclane molecules relax to the electronic ground state. The fast pathway (<100 femtoseconds) is distinguished by effective coupling to valence electronic states, while the slow pathway involves initial motions across Rydberg states and takes several hundred femtoseconds. Both pathways facilitate interconversion between the two isomers, albeit on different timescales, and we predict that the branching ratio of norbornadiene/quadricyclane products immediately after returning to the electronic ground state is approximately 3:2.

9.
J Crit Care ; 81: 154531, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38341938

ABSTRACT

PURPOSE: We investigated driving pressure (ΔP) and mechanical power (MP) and associations with clinical outcomes in critically ill patients ventilated for reasons other than ARDS. MATERIALS AND METHODS: Individual patient data analysis of a pooled database that included patients from four observational studies of ventilation. ΔP and MP were compared among invasively ventilated non-ARDS patients with sepsis, with pneumonia, and not having sepsis or pneumonia. The primary endpoint was ΔP; secondary endpoints included MP, ICU mortality and length of stay, and duration of ventilation. RESULTS: This analysis included 372 (11%) sepsis patients, 944 (28%) pneumonia patients, and 2040 (61%) patients ventilated for any other reason. On day 1, median ΔP was higher in sepsis (14 [11-18] cmH2O) and pneumonia patients (14 [11-18]cmH2O), as compared to patients not having sepsis or pneumonia (13 [10-16] cmH2O) (P < 0.001). Median MP was also higher in sepsis and pneumonia patients. ΔP, as opposed to MP, was associated with ICU mortality in sepsis and pneumonia patients. CONCLUSIONS: The intensity of ventilation differed between patients with sepsis or pneumonia and patients receiving ventilation for any other reason; ΔP was associated with higher mortality in sepsis and pneumonia patients. REGISTRATION: This post hoc analysis was not registered; the individual studies that were merged into the used database were registered at clinicaltrials.gov: NCT01268410 (ERICC), NCT02010073 (LUNG SAFE), NCT01868321 (PRoVENT), and NCT03188770 (PRoVENT-iMiC).


Subject(s)
Pneumonia , Respiratory Distress Syndrome , Sepsis , Humans , Respiration, Artificial/adverse effects , Intensive Care Units , Lung , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/etiology , Sepsis/therapy , Sepsis/etiology
10.
J Biol Chem ; 300(2): 105623, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176650

ABSTRACT

Group A Streptococcal M-related proteins (Mrps) are dimeric α-helical-coiled-coil cell membrane-bound surface proteins. During infection, Mrp recruit the fragment crystallizable region of human immunoglobulin G via their A-repeat regions to the bacterial surface, conferring upon the bacteria enhanced phagocytosis resistance and augmented growth in human blood. However, Mrps show a high degree of sequence diversity, and it is currently not known whether this diversity affects the Mrp-IgG interaction. Herein, we report that diverse Mrps all bind human IgG subclasses with nanomolar affinity, with differences in affinity which ranged from 3.7 to 11.1 nM for mixed IgG. Using surface plasmon resonance, we confirmed Mrps display preferential IgG-subclass binding. All Mrps were found to have a significantly weaker affinity for IgG3 (p < 0.05) compared to all other IgG subclasses. Furthermore, plasma pulldown assays analyzed via Western blotting revealed that all Mrp were able to bind IgG in the presence of other serum proteins at both 25 °C and 37 °C. Finally, we report that dimeric Mrps bind to IgG with a 1:1 stoichiometry, enhancing our understanding of this important host-pathogen interaction.


Subject(s)
Bacterial Proteins , Streptococcus pyogenes , Humans , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Immunoglobulin G/metabolism , Streptococcus pyogenes/metabolism
11.
R Soc Open Sci ; 10(10): 231127, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37830029

ABSTRACT

Trait-based ecology is a rapidly growing approach for developing insights and predictions for data-poor species. Caudal tail fin shape has the potential to reveal much about the energetics, activity and ecology of fishes and can be rapidly measured from field guides, which is particularly helpful for data-sparse species. One outstanding question is whether swimming speed in sharks is related to two morphological traits: caudal fin aspect ratio (CFAR, height2/tail area) and caudal lobe asymmetry ratio (CLAR). We derived both metrics from the species drawings in Sharks of the world (Ebert et al. 2013 Sharks of the world: a fully illustrated guide) and related fin shape to two published datasets of (1) instantaneous swimming speeds (Jacoby et al. 2015 Biol. Lett. 11, 20150781 (doi:10.1098/rsbl.2015.0781)) and (2) cruising speeds (Harding et al. 2021 Funct. Ecol. 35, 1951-1959 (doi:10.1111/1365-2435.13869)) for 28 total unique shark species. Both estimates of swimming speed were positively related to CFAR (and weakly negatively to CLAR). Hence, shark species with larger CFAR and more symmetric tails (low CLAR) tended to be faster-moving and have higher average speeds. This relationship demonstrates the opportunity to use tail shape as an easily measured trait to index shark swimming speed to broader trait-based analyses of ecological function and extinction risk.

12.
J Fish Biol ; 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37837176

ABSTRACT

Acoustic telemetry (AT) has become ubiquitous in aquatic monitoring and fish biology, conservation, and management. Since the early use of active ultrasonic tracking that required researchers to follow at a distance their species of interest, the field has diversified considerably, with exciting advances in both hydrophone and transmitter technology. Once a highly specialized methodology, however, AT is fast becoming a generalist tool for those wishing to study or conserve fishes, leading to diversifying application by non-specialists. With this transition in mind, we evaluate exactly what AT has become useful for, discussing how the technological and analytical advances around AT can address important questions within fish biology. In doing so, we highlight the key ecological and applied research areas where AT continues to reveal crucial new insights and, in particular, when combined with complimentary research approaches. We provide a comprehensive breakdown of the state of the art for applications of AT, discussing the ongoing challenges, where its strengths lie, and how future developments may revolutionize fisheries management, behavioral ecology and species protection. Through selected papers we illustrate specific applications across the broad spectrum of fish biology. By bringing together the recent and future developments in this field under categories designed to broadly capture many aspects of fish biology, we hope to offer a useful guide for the non-specialist practitioner as they attempt to navigate the dizzying array of considerations and ongoing developments within this diverse toolkit.

13.
Curr Biol ; 33(17): R888-R893, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37699341

ABSTRACT

Anguillid eels have fascinated humans for centuries, but our knowledge of these mysterious fish is still scant. There are 19 species or subspecies in the genus Anguilla, which are found globally, except in the eastern Pacific and southern Atlantic. Their common label 'freshwater eels' is a misnomer - all anguillids are facultatively catadromous, born in marine environments, developing in continental waters, with a proportion never entering freshwater at all. Anguillid eels have several life history traits that have allowed them to exploit a broad range of habitats. As such, anguillid eels play an important ecological role in both marine and freshwater environments as well as being commercially valuable. Because of this, anguillid eels are under threat from multiple stressors, such as barriers to migration, pollution, parasites, disease, climate change and unsustainable exploitation. Six species are listed as Threatened in the Red List of Threatened Species, and four are listed as Data Deficient. Strengthening conservation and management of these species is essential, and further research provides an exciting opportunity to develop a greater understanding of this mysterious clade of fish.


Subject(s)
Climate Change , Eels , Animals , Humans , Endangered Species , Environmental Pollution , Fresh Water
14.
J Clin Med ; 12(18)2023 09 05.
Article in English | MEDLINE | ID: mdl-37762725

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a risk factor for death in patients admitted to intensive care units (ICUs) for respiratory support. Previous reports suggested higher mortality in COPD patients with COVID-19. It is yet unknown whether patients with COPD were treated differently compared to non-COPD patients. We compared the ventilation management and outcomes of invasive ventilation for COVID-19 in COPD patients versus non-COPD patients. This was a post hoc analysis of a nation-wide, observational study in the Netherlands. COPD patients were compared to non-COPD patients with respect to key ventilation parameters. The secondary endpoints included adjunctive treatments for refractory hypoxemia, and 28-day mortality. Of a total of 1090 patients, 88 (8.1%) were classified as having COPD. The ventilation parameters were not different between COPD patients and non-COPD patients, except for FiO2, which was higher in COPD patients. Prone positioning was applied more often in COPD patients. COPD patients had higher 28-day mortality than non-COPD patients. COPD had an independent association with 28-day mortality. In this cohort of patients who received invasive ventilation for COVID-19, only FiO2 settings and the use of prone positioning were different between COPD patients and non-COPD patients. COPD patients had higher mortality than non-COPD patients.

15.
J Phys Chem Lett ; 14(31): 7126-7133, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37534743

ABSTRACT

Recent developments in X-ray free-electron lasers have enabled a novel site-selective probe of coupled nuclear and electronic dynamics in photoexcited molecules, time-resolved X-ray photoelectron spectroscopy (TRXPS). We present results from a joint experimental and theoretical TRXPS study of the well-characterized ultraviolet photodissociation of CS2, a prototypical system for understanding non-adiabatic dynamics. These results demonstrate that the sulfur 2p binding energy is sensitive to changes in the nuclear structure following photoexcitation, which ultimately leads to dissociation into CS and S photoproducts. We are able to assign the main X-ray spectroscopic features to the CS and S products via comparison to a first-principles determination of the TRXPS based on ab initio multiple-spawning simulations. Our results demonstrate the use of TRXPS as a local probe of complex ultrafast photodissociation dynamics involving multimodal vibrational coupling, nonradiative transitions between electronic states, and multiple final product channels.

16.
PLoS One ; 18(8): e0289412, 2023.
Article in English | MEDLINE | ID: mdl-37611007

ABSTRACT

BACKGROUND: INTELLiVENT-Adaptive Support Ventilation (ASV) is a closed-loop ventilation mode that uses capnography to adjust tidal volume (VT) and respiratory rate according to a user-set end-tidal CO2 (etCO2) target range. We compared sidestream versus mainstream capnography with this ventilation mode with respect to the quality of breathing in patients after cardiac surgery. METHODS: Single-center, single-blinded, non-inferiority, randomized clinical trial in adult patients scheduled for elective cardiac surgery that were expected to receive at least two hours of postoperative ventilation in the ICU. Patients were randomized 1:1 to closed-loop ventilation with sidestream or mainstream capnography. Each breath was classified into a zone based on the measured VT, maximum airway pressure, etCO2 and pulse oximetry. The primary outcome was the proportion of breaths spent in a predefined 'optimal' zone of ventilation during the first three hours of postoperative ventilation, with a non-inferiority margin for the difference in the proportions set at -20%. Secondary endpoints included the proportion of breaths in predefined 'acceptable' and 'critical' zones of ventilation, and the proportion of breaths with hypoxemia. RESULTS: Of 80 randomized subjects, 78 were included in the intention-to-treat analysis. We could not confirm the non-inferiority of closed-loop ventilation using sidestream with respect to the proportion of breaths in the 'optimal' zone (mean ratio 0.87 [0.77 to ∞]; P = 0.116 for non-inferiority). The proportion of breaths with hypoxemia was higher in the sidestream capnography group versus the mainstream capnography group. CONCLUSIONS: We could not confirm that INTELLiVENT-ASV using sidestream capnography is non-inferior to INTELLiVENT-ASV using mainstream capnography with respect to the quality of breathing in subjects receiving postoperative ventilation after cardiac surgery. TRIAL REGISTRATION: NCT04599491 (clinicaltrials.gov).


Subject(s)
Capnography , Cardiac Surgical Procedures , Adult , Humans , Respiration , Tidal Volume , Hypoxia
17.
J Clin Med ; 12(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37445542

ABSTRACT

The aim of this analysis was to compare ventilation management and outcomes in invasively ventilated patients with acute hypoxemic respiratory failure due to coronavirus disease 2019 (COVID-19) between the first and second wave in the Netherlands. This is a post hoc analysis of two nationwide observational COVID-19 studies conducted in quick succession. The primary endpoint was ventilation management. Secondary endpoints were tracheostomy use, duration of ventilation, intensive care unit (ICU) and hospital length of stay (LOS), and mortality. We used propensity score matching to control for observed confounding factors. This analysis included 1122 patients from the first and 568 patients from the second wave. Patients in the second wave were sicker, had more comorbidities, and had worse oxygenation parameters. They were ventilated with lower positive end-expiratory pressure and higher fraction inspired oxygen, had a lower oxygen saturation, received neuromuscular blockade more often, and were less often tracheostomized. Duration of ventilation was shorter, but mortality rates were similar. After matching, the fraction of inspired oxygen was lower in the second wave. In patients with acute hypoxemic respiratory failure due to COVID-19, aspects of respiratory care and outcomes rapidly changed over the successive waves.

18.
Intensive Care Med Exp ; 11(1): 42, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37442844

ABSTRACT

INTRODUCTION: The driving pressure (ΔP) has an independent association with outcome in patients with acute respiratory distress syndrome (ARDS). INTELLiVENT-Adaptive Support Ventilation (ASV) is a closed-loop mode of ventilation that targets the lowest work and force of breathing. AIM: To compare transpulmonary and respiratory system ΔP between closed-loop ventilation and conventional pressure controlled ventilation in patients with moderate-to-severe ARDS. METHODS: Single-center randomized cross-over clinical trial in patients in the early phase of ARDS. Patients were randomly assigned to start with a 4-h period of closed-loop ventilation or conventional ventilation, after which the alternate ventilation mode was selected. The primary outcome was the transpulmonary ΔP; secondary outcomes included respiratory system ΔP, and other key parameters of ventilation. RESULTS: Thirteen patients were included, and all had fully analyzable data sets. Compared to conventional ventilation, with closed-loop ventilation the median transpulmonary ΔP with was lower (7.0 [5.0-10.0] vs. 10.0 [8.0-11.0] cmH2O, mean difference - 2.5 [95% CI - 2.6 to - 2.1] cmH2O; P = 0.0001). Inspiratory transpulmonary pressure and the respiratory rate were also lower. Tidal volume, however, was higher with closed-loop ventilation, but stayed below generally accepted safety cutoffs in the majority of patients. CONCLUSIONS: In this small physiological study, when compared to conventional pressure controlled ventilation INTELLiVENT-ASV reduced the transpulmonary ΔP in patients in the early phase of moderate-to-severe ARDS. This closed-loop ventilation mode also led to a lower inspiratory transpulmonary pressure and a lower respiratory rate, thereby reducing the intensity of ventilation. Trial registration Clinicaltrials.gov, NCT03211494, July 7, 2017. https://clinicaltrials.gov/ct2/show/NCT03211494?term=airdrop&draw=2&rank=1 .

19.
Ann Intensive Care ; 13(1): 64, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37452196

ABSTRACT

BACKGROUND: High-flow nasal oxygen (HFNO) is increasingly used in patients with acute hypoxemic respiratory failure. It is uncertain whether a broadened Berlin definition of acute respiratory distress syndrome (ARDS), in which ARDS can be diagnosed in patients who are not receiving ventilation, results in similar groups of patients receiving HFNO as in patients receiving ventilation. METHODS: We applied a broadened definition of ARDS in a multicenter, observational study in adult critically ill patients with acute hypoxemic respiratory failure due to coronavirus disease 2019 (COVID-19), wherein the requirement for a minimal level of 5 cm H2O PEEP with ventilation is replaced by a minimal level of airflow rate with HFNO, and compared baseline characteristics and outcomes between patients receiving HFNO and patients receiving ventilation. The primary endpoint was ICU mortality. We also compared outcomes in risk for death groups using the PaO2/FiO2 cutoffs as used successfully in the original definition of ARDS. Secondary endpoints were hospital mortality; mortality on days 28 and 90; need for ventilation within 7 days in patients that started with HFNO; the number of days free from HFNO or ventilation; and ICU and hospital length of stay. RESULTS: Of 728 included patients, 229 patients started with HFNO and 499 patients with ventilation. All patients fulfilled the broadened Berlin definition of ARDS. Patients receiving HFNO had lower disease severity scores and lower PaO2/FiO2 than patients receiving ventilation. ICU mortality was lower in receiving HFNO (22.7 vs 35.6%; p = 0.001). Using PaO2/FiO2 cutoffs for mild, moderate and severe arterial hypoxemia created groups with an ICU mortality of 16.7%, 22.0%, and 23.5% (p = 0.906) versus 19.1%, 37.9% and 41.4% (p = 0.002), in patients receiving HFNO versus patients receiving ventilation, respectively. CONCLUSIONS: Using a broadened definition of ARDS may facilitate an earlier diagnosis of ARDS in patients receiving HFNO; however, ARDS patients receiving HFNO and ARDS patients receiving ventilation have distinct baseline characteristics and mortality rates. TRIAL REGISTRATION: The study is registered at ClinicalTrials.gov (identifier NCT04719182).

SELECTION OF CITATIONS
SEARCH DETAIL
...