Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
bioRxiv ; 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37745366

ABSTRACT

Adverse social determinants of health (aSDoH) are associated with obesity and related comorbidities like diabetes, cardiovascular disease, and cancer. Obesity is also associated with natural killer cell (NK) dysregulation, suggesting a potential mechanistic link. Therefore, we measured NK phenotypes and function in a cohort of African-American (AA) women from resource-limited neighborhoods. Obesity was associated with reduced NK cytotoxicity and a shift towards a regulatory phenotype. In vitro, LDL promoted NK dysfunction, implicating hyperlipidemia as a mediator of obesity-related immune dysregulation. Dual specific phosphatase 1 (DUSP1) was induced by LDL and was upregulated in NK cells from subjects with obesity, implicating DUSP1 in obesity-mediated NK dysfunction. In vitro, DUSP1 repressed LAMP1/CD107a, depleting NK cells of functional lysosomes to prevent degranulation and cytokine secretion. Together, these data provide novel mechanistic links between aSDoH, obesity, and immune dysregulation that could be leveraged to improve outcomes in marginalized populations.

2.
Mol Ther Oncolytics ; 28: 74-87, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36699615

ABSTRACT

Multiple clinical trials exploring the potential of adoptive natural killer (NK) cell therapy for cancer have employed ex vivo expansion using feeder cells to obtain large numbers of NK cells. We have previously utilized the rhesus macaque model to clonally track the NK cell progeny of barcode-transduced CD34+ stem and progenitor cells after transplant. In this study, NK cells from barcoded rhesus macaques were used to study the changes in NK cell clonal patterns that occurred during ex vivo expansion using culture protocols similar to those employed in clinical preparation of human NK cells including irradiated lymphoblastoid cell line (LCL) feeder cells or K562 cells expressing 4-1BBL and membrane-bound interleukin-21 (IL-21). NK expansion cultures resulted in the proliferation of clonally diverse NK cells, which, at day 14 harvest, contained greater than 50% of the starting barcode repertoire. Diversity as measured by Shannon index was maintained after culture. With both LCL and K562 feeders, proliferation of long-lived putative memory-like NK cell clones was observed, with these clones continuing to constitute a mean of 31% of the total repertoire of expanded cells. These experiments provide insight into the clonal makeup of expanded NK cell clinical products.

3.
IDCases ; 31: e01701, 2023.
Article in English | MEDLINE | ID: mdl-36694814

ABSTRACT

This is the first reported case of fatal opportunistic Trichosporon asahii pneumonia in the setting of severe COVID-19 pneumonia. The patient had ventilator-requiring respiratory failure secondary to COVID-19 infection. The patient received intravenous broad-spectrum antibiotics, tocilizumab, and corticosteroids with subsequent development of cavitary infiltrates. Bronchoalveolar lavage grew T. asahii. We describe a rare complication of COVID-19 infection and describe the microbial diagnosis, possible mechanism of infection, and optimal treatment.

4.
J Immunother Cancer ; 10(2)2022 02.
Article in English | MEDLINE | ID: mdl-35135865

ABSTRACT

BACKGROUND: Adoptive transfer of natural killer (NK) cells with augmented antibody-dependent cellular cytotoxicity (ADCC) capabilities and resistance to CD38 targeting has the potential to enhance the clinical anti-myeloma activity of daratumumab (DARA). Therefore, we sought to develop an efficient CRISPR/Cas9-based gene editing platform to disrupt CD38 expression (CD38 knockout (KO)) in ex vivo expanded NK cells and simultaneously arm CD38KO NK cells with a high-affinity CD16 (CD16-158V) receptor. METHODS: CD38KO human NK cells were generated using Cas9 ribonucleoprotein complexes. The platform was expanded by incorporating messenger RNA (mRNA) transfection of CD38KO NK cells and targeted gene insertion at the CD38 locus to mediate gene knockin (KI). The capacity of these gene-edited NK cells to persist and mediate ADCC in the presence of DARA was tested in vitro and in a MM.1S xenograft mouse model. RESULTS: Highly efficient CD38 gene disruption was achieved in ex vivo expanded NK cells without affecting their proliferative or functional capacity. CD38 KO conferred resistance to DARA-induced NK cell fratricide, enabling persistence and augmented ADCC against myeloma cell lines in the presence of DARA in vitro and in a MM.1S xenograft mouse model. CD38KO NK cells could be further modified by transfection with mRNA encoding a CD16-158V receptor, resulting in augmented DARA-mediated ADCC. Finally, we observed that a homology-directed repair template targeted to the CD38 locus facilitated an efficient 2-in-1 CD38 KO coupled with KI of a truncated CD34 reporter and CD16-158V receptor, with CD38KO/CD16KI NK cells demonstrating a further enhancement of DARA-mediated ADCC both in vitro and in vivo. CONCLUSIONS: Adoptive immunotherapy using ex vivo expanded CD38KO/CD16KI NK cells has the potential to boost the clinical efficacy of DARA. By incorporating complementary genetic engineering strategies into a CD38 KO manufacturing platform, we generated NK cells with substantially augmented CD38-directed antitumor activity, establishing a strong rationale for exploring this immunotherapy strategy in the clinic.


Subject(s)
ADP-ribosyl Cyclase 1/metabolism , CRISPR-Cas Systems/immunology , Gene Editing/methods , Immunotherapy/methods , Killer Cells, Natural/metabolism , Animals , Cell Line, Tumor , Humans , Luciferases, Firefly , Mice , Mice, Inbred NOD , Transfection
5.
Front Immunol ; 13: 994498, 2022.
Article in English | MEDLINE | ID: mdl-36605190

ABSTRACT

Tissue resident (TR) immune cells play important roles in facilitating tissue homeostasis, coordinating immune responses against infections and tumors, and maintaining immunological memory. While studies have shown these cells are distinct phenotypically and functionally from cells found in the peripheral blood (PB), the clonal relationship between these populations across tissues has not been comprehensively studied in primates or humans. We utilized autologous transplantation of rhesus macaque hematopoietic stem and progenitor cells containing high diversity barcodes to track the clonal distribution of T, B, myeloid and natural killer (NK) cell populations across tissues, including liver, spleen, lung, and gastrointestinal (GI) tract, in comparison with PB longitudinally post-transplantation, in particular we focused on NK cells which do not contain endogenous clonal markers and have not been previously studied in this context. T cells demonstrated tissue-specific clonal expansions as expected, both overlapping and distinct from blood T cells. In contrast, B and myeloid cells showed a much more homogeneous clonal pattern across various tissues and the blood. The clonal distribution of TR NK was more heterogenous between individual animals. In some animals, as we have previously reported, we observed large PB clonal expansions in mature CD56-CD16+ NK cells. Notably, we found a separate set of highly expanded PB clones in CD16-CD56- (DN) NK subset that were also contributing to TR NK cells in all tissues examined, both in TR CD56-CD16+ and DN populations but absent in CD56+16- TR NK across all tissues analyzed. Additionally, we observed sets of TR NK clones specific to individual tissues such as lung or GI tract and sets of TR NK clones shared across liver and spleen, distinct from other tissues. Combined with prior functional data that suggests NK memory is restricted to liver or other TR NK cells, these clonally expanded TR NK cells may be of interest for future investigation into NK cell tissue immunological memory, with implications for development of NK based immunotherapies and an understanding of NK memory.


Subject(s)
Killer Cells, Natural , Myeloid Cells , Animals , Clone Cells , Macaca mulatta
6.
Mol Ther Methods Clin Dev ; 20: 559-571, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33665226

ABSTRACT

Transduction of primary human natural killer (NK) cells with lentiviral vectors has historically been challenging. We sought to evaluate multiple parameters to optimize lentiviral transduction of human peripheral blood NK cells being expanded to large numbers using a good manufacturing practice (GMP)-compliant protocol that utilizes irradiated lymphoblastoid (LCL) feeder cells. Although prestimulation of NK cells with interleukin (IL)-2 for 2 or more days facilitated transduction with vesicular stomatitis virus glycoprotein (VSVG)-pseudotyped lentivirus, there was a subsequent impairment in the capacity of transduced NK cells to proliferate when stimulated with LCL feeder cells. In contrast, incubation of human NK cells with LCL feeder cells plus IL-2 before transduction in the presence of the TBK1 inhibitor BX795 resulted in efficient lentiviral integration (mean of 23% transgene+ NK cells) and successful subsequent proliferation of the transduced cells. Investigation of multiple internal promoter sequences within the same lentiviral vector revealed differences in percentage and level of transgene expression per NK cell. Bicistronic lentiviral vectors encoding both GFP and proteins suitable for the isolation of transduced cells with magnetic beads led to efficient transgene expression in NK cells. The optimized approaches described herein provide a template for protocols that generate large numbers of fully functional and highly purified lentivirus-transduced NK cells for clinical trials.

7.
Cancers (Basel) ; 13(4)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669611

ABSTRACT

A growing number of natural killer (NK) cell-based immunotherapy trials utilize ex vivo expansion to grow and activate allogenic and autologous NK cells prior to administration to patients with malignancies. Recent data in both murine and macaque models have shown that adoptively infused ex vivo expanded NK cells have extensive trafficking into liver tissue, with relatively low levels of homing to other sites where tumors often reside, such as the bone marrow or lymph nodes. Here, we evaluated gene and surface expression of molecules involved in cellular chemotaxis in freshly isolated human NK cells compared with NK cells expanded ex vivo using two different feeder cells lines: Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines (LCLs) or K562 cells with membrane-bound (mb) 4-1BB ligand and interleukin (IL)-21. Expanded NK cells had altered expression in a number of genes that encode chemotactic ligands and chemotactic receptors that impact chemoattraction and chemotaxis. Most notably, we observed drastic downregulation of C-X-C chemokine receptor type 4 (CXCR4) and upregulation of C-C chemokine receptor type 5 (CCR5) transcription and phenotypic expression. clustered regularly interspaced short palindromic repeats (CRISPR) gene editing of CCR5 in expanded NK cells reduced cell trafficking into liver tissue and increased NK cell presence in the circulation following infusion into immunodeficient mice. The findings reported here show that ex vivo expansion alters multiple factors that govern NK cell homing and define a novel approach using CRISPR gene editing that reduces sequestration of NK cells by the liver.

8.
Mucosal Immunol ; 14(1): 164-176, 2021 01.
Article in English | MEDLINE | ID: mdl-32355319

ABSTRACT

CD4+ T cells contribute critically to a protective immune response during intestinal infections, but have also been implicated in the aggravation of intestinal inflammatory pathology. Previous studies suggested that T helper type (Th)1 and Th17 cells depend on de novo fatty acid (FA) synthesis for their development and effector function. Here, we report that T-cell-specific targeting of the enzyme acetyl-CoA carboxylase 1 (ACC1), a major checkpoint controlling FA synthesis, impaired intestinal Th1 and Th17 responses by limiting CD4+ T-cell expansion and infiltration into the lamina propria in murine models of colitis and infection-associated intestinal inflammation. Importantly, pharmacological inhibition of ACC1 by the natural compound soraphen A mirrored the anti-inflammatory effects of T-cell-specific targeting, but also enhanced susceptibility toward infection with C. rodentium. Further analysis revealed that deletion of ACC1 in RORγt+ innate lymphoid cells (ILC), but not dendritic cells or macrophages, decreased resistance to infection by interfering with IL-22 production and intestinal barrier function. Together, our study suggests pharmacological targeting of ACC1 as an effective approach for metabolic immune modulation of T-cell-driven intestinal inflammatory responses, but also reveals an important role of ACC1-mediated lipogenesis for the function of RORγt+ ILC.


Subject(s)
Biosynthetic Pathways/drug effects , Fatty Acids/biosynthesis , Immunity, Innate , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Animals , Biomarkers , Colitis/etiology , Colitis/metabolism , Colitis/pathology , Disease Models, Animal , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
9.
Front Immunol ; 12: 772332, 2021.
Article in English | MEDLINE | ID: mdl-35095846

ABSTRACT

The in vivo tissue distribution and trafficking patterns of natural killer (NK) cells remain understudied. Animal models can help bridge the gap, and rhesus macaque (RM) primates faithfully recapitulate key elements of human NK cell biology. Here, we profiled the tissue distribution and localization patterns of three NK cell subsets across various RM tissues. We utilized serial intravascular staining (SIVS) to investigate the tissue trafficking kinetics at steady state and during recovery from CD16 depletion. We found that at steady state, CD16+ NK cells were selectively retained in the vasculature while CD56+ NK cells had a shorter residence time in peripheral blood. We also found that different subsets of NK cells had distinct trafficking kinetics to and from the lymph node as well as other lymphoid and non-lymphoid tissues. Lastly, we found that following administration of CD16-depleting antibody, CD16+ NK cells and their putative precursors retained a high proportion of continuously circulating cells, suggesting that regeneration of the CD16 NK compartment may take place in peripheral blood or the perivascular compartments of tissues.


Subject(s)
Killer Cells, Natural/immunology , Macaca mulatta/immunology , Animals , CD56 Antigen/immunology , Kinetics , Lymph Nodes/immunology , Staining and Labeling
10.
Mol Ther ; 29(1): 47-59, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33010232

ABSTRACT

Many investigational adoptive immunotherapy regimens utilizing natural killer (NK) cells require the administration of interleukin-2 (IL-2) or IL-15, but these cytokines cause serious dose-dependent toxicities. To reduce or preclude the necessity for IL-2 use, we investigated whether genetic engineering of NK cells to express the erythropoietin (EPO) receptor (EPOR) or thrombopoietin (TPO) receptor (c-MPL) could be used as a method to improve NK cell survival and function. Viral transduction of NK-92 cells to express EPOR or c-MPL receptors conveyed signaling via appropriate pathways, protected cells from apoptosis, augmented cellular proliferation, and increased cell cytotoxic function in response to EPO or TPO ligands in vitro. In the presence of TPO, viral transduction of primary human NK cells to express c-MPL enhanced cellular proliferation and increased degranulation and cytokine production toward target cells in vitro. In contrast, transgenic expression of EPOR did not augment the proliferation of primary NK cells. In immunodeficient mice receiving TPO, in vivo persistence of primary human NK cells genetically modified to express c-MPL was higher compared with control NK cells. These data support the concept that genetic manipulation of NK cells to express hematopoietic growth factor receptors could be used as a strategy to augment NK cell proliferation and antitumor immunity.


Subject(s)
Gene Expression , Immunomodulation/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Neoplasms/immunology , Neoplasms/therapy , Receptors, Erythropoietin/genetics , Receptors, Thrombopoietin/genetics , Animals , Disease Models, Animal , Genetic Engineering , Humans , Immunotherapy/methods , Mice , Transgenes
11.
J Exp Med ; 217(1)2020 01 06.
Article in English | MEDLINE | ID: mdl-31570496

ABSTRACT

CCR6- group 3 innate lymphoid cells (ILC3s) are mediators of intestinal immunity and barrier function that possess the capacity to acquire type 1 effector features and fully convert into ILC1s. The molecular mechanisms governing such plasticity are undefined. Here, we identified c-Maf as an essential regulator of ILC3 homeostasis and plasticity that limits physiological ILC1 conversion. Phenotypic analysis of effector status in Maf-deficient CCR6- ILC3s, coupled with evaluation of global changes in transcriptome, chromatin accessibility, and transcription factor motif enrichment, revealed that c-Maf enforces ILC3 identity. c-Maf promoted ILC3 accessibility and supported RORγt activity and expression of type 3 effector genes. Conversely, c-Maf antagonized type 1 programming, largely through restraint of T-bet expression and function. Mapping of the dynamic changes in chromatin landscape accompanying CCR6- ILC3 development and ILC1 conversion solidified c-Maf as a gatekeeper of type 1 regulatory transformation and a controller of ILC3 fate.


Subject(s)
Immunity, Innate/immunology , Lymphocytes/immunology , Proto-Oncogene Proteins c-maf/immunology , Animals , Cell Lineage/immunology , Chromatin/immunology , Gene Expression Regulation/immunology , Homeostasis/immunology , Mice , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Transcription Factors/immunology , Transcriptome/immunology
12.
J Virol ; 94(1)2019 12 12.
Article in English | MEDLINE | ID: mdl-31597762

ABSTRACT

Natural killer (NK) cells are a subset of innate lymphoid cells (ILC) capable of recognizing stressed and infected cells through multiple germ line-encoded receptor-ligand interactions. Missing-self recognition involves NK cell sensing of the loss of host-encoded inhibitory ligands on target cells, including MHC class I (MHC-I) molecules and other MHC-I-independent ligands. Mouse cytomegalovirus (MCMV) infection promotes a rapid host-mediated loss of the inhibitory NKR-P1B ligand Clr-b (encoded by Clec2d) on infected cells. Here we provide evidence that an MCMV m145 family member, m153, functions to stabilize cell surface Clr-b during MCMV infection. Ectopic expression of m153 in fibroblasts augments Clr-b cell surface levels. Moreover, infections using m153-deficient MCMV mutants (Δm144-m158 and Δm153) show an accelerated and exacerbated Clr-b downregulation. Importantly, enhanced loss of Clr-b during Δm153 mutant infection reverts to wild-type levels upon exogenous m153 complementation in fibroblasts. While the effects of m153 on Clr-b levels are independent of Clec2d transcription, imaging experiments revealed that the m153 and Clr-b proteins only minimally colocalize within the same subcellular compartments, and tagged versions of the proteins were refractory to coimmunoprecipitation under mild-detergent conditions. Surprisingly, the Δm153 mutant possesses enhanced virulence in vivo, independent of both Clr-b and NKR-P1B, suggesting that m153 potentially targets additional host factors. Nevertheless, the present data highlight a unique mechanism by which MCMV modulates NK ligand expression.IMPORTANCE Cytomegaloviruses are betaherpesviruses that in immunocompromised individuals can lead to severe pathologies. These viruses encode various gene products that serve to evade innate immune recognition. NK cells are among the first immune cells that respond to CMV infection and use germ line-encoded NK cell receptors (NKR) to distinguish healthy from virus-infected cells. One such axis that plays a critical role in NK recognition involves the inhibitory NKR-P1B receptor, which engages the host ligand Clr-b, a molecule commonly lost on stressed cells ("missing-self"). In this study, we discovered that mouse CMV utilizes the m153 glycoprotein to circumvent host-mediated Clr-b downregulation, in order to evade NK recognition. These results highlight a novel MCMV-mediated immune evasion strategy.


Subject(s)
Host-Pathogen Interactions/genetics , Killer Cells, Natural/virology , Lectins, C-Type/genetics , Muromegalovirus/genetics , NK Cell Lectin-Like Receptor Subfamily B/genetics , Receptors, Immunologic/genetics , Viral Matrix Proteins/genetics , Animals , Gene Expression Regulation/immunology , Genetic Complementation Test , Herpesviridae Infections , Host-Pathogen Interactions/immunology , Immunity, Innate , Killer Cells, Natural/immunology , Lectins, C-Type/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Muromegalovirus/immunology , Muromegalovirus/pathogenicity , NIH 3T3 Cells , NK Cell Lectin-Like Receptor Subfamily B/immunology , Receptors, Immunologic/immunology , Signal Transduction , Viral Load , Viral Matrix Proteins/deficiency , Viral Matrix Proteins/immunology , Virus Replication
13.
Nat Immunol ; 20(7): 865-878, 2019 07.
Article in English | MEDLINE | ID: mdl-31086333

ABSTRACT

Natural killer (NK) cells are critical mediators of host immunity to pathogens. Here, we demonstrate that the endoplasmic reticulum stress sensor inositol-requiring enzyme 1 (IRE1α) and its substrate transcription factor X-box-binding protein 1 (XBP1) drive NK cell responses against viral infection and tumors in vivo. IRE1α-XBP1 were essential for expansion of activated mouse and human NK cells and are situated downstream of the mammalian target of rapamycin signaling pathway. Transcriptome and chromatin immunoprecipitation analysis revealed c-Myc as a new and direct downstream target of XBP1 for regulation of NK cell proliferation. Genetic ablation or pharmaceutical blockade of IRE1α downregulated c-Myc, and NK cells with c-Myc haploinsufficency phenocopied IRE1α-XBP1 deficiency. c-Myc overexpression largely rescued the proliferation defect in IRE1α-/- NK cells. Like c-Myc, IRE1α-XBP1 also promotes oxidative phosphorylation in NK cells. Overall, our study identifies a IRE1α-XBP1-cMyc axis in NK cell immunity, providing insight into host protection against infection and cancer.


Subject(s)
Endoplasmic Reticulum Stress/genetics , Endoribonucleases/genetics , Gene Expression Regulation , Genes, myc , Immunity/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Protein Serine-Threonine Kinases/genetics , Animals , Biomarkers , Cell Survival/genetics , Cell Survival/immunology , Cytotoxicity, Immunologic , Host-Pathogen Interactions/immunology , Humans , Lymphocyte Activation/immunology , Melanoma, Experimental , Mice , Mice, Knockout , Mitochondria/metabolism , Oxidative Phosphorylation , Signal Transduction , X-Box Binding Protein 1/metabolism
14.
Dalton Trans ; 48(1): 50-57, 2018 Dec 18.
Article in English | MEDLINE | ID: mdl-30280177

ABSTRACT

Three new uranium species (C5Me5)2U([double bond, length as m-dash]N-2,6-iPr2-C6H3)([double bond, length as m-dash]S), (C5Me5)2U([double bond, length as m-dash]N-2,6-iPr2-C6H3)(η2-S2), and (C5Me5)2U([double bond, length as m-dash]N-2,6-iPr2-C6H3)(S[double bond, length as m-dash]PMe3) were synthesized and fully characterized by a combination of NMR, IR, and UV/vis-NIR spectroscopies, elemental analysis, and cyclic voltammetry. The solid state structures of (C5Me5)2U([double bond, length as m-dash]N-2,6-iPr2-C6H3)([double bond, length as m-dash]S) and (C5Me5)2U([double bond, length as m-dash]N-2,6-iPr2-C6H3)(η2-S2) were also determined. The compound (C5Me5)2U([double bond, length as m-dash]N-2,6-iPr2-C6H3)([double bond, length as m-dash]S) is the first neutral uranium complex with a terminal sulphido ligand, and (C5Me5)2U([double bond, length as m-dash]N-2,6-iPr2-C6H3)(S[double bond, length as m-dash]PMe3) is the first uranium compound with a coordinated phosphine sulphide ligand. The phosphine sulphide adduct, (C5Me5)2U([double bond, length as m-dash]N-2,6-iPr2-C6H3)(S[double bond, length as m-dash]PMe3), can be synthesized either by reaction of the uranium(iv) complex (C5Me5)2U([double bond, length as m-dash]N-2,6-iPr2-C6H3)(thf) with S[double bond, length as m-dash]PMe3 or by the reaction of the uranium(vi) terminal sulphido complex (C5Me5)2U([double bond, length as m-dash]N-2,6-iPr2-C6H3)([double bond, length as m-dash]S) with PMe3.

15.
Immunity ; 48(6): 1208-1219.e4, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29858011

ABSTRACT

While signals that activate group 3 innate lymphoid cells (ILC3s) have been described, the factors that negatively regulate these cells are less well understood. Here we found that the tumor necrosis factor (TNF) superfamily member receptor activator of nuclear factor κB ligand (RANKL) suppressed ILC3 activity in the intestine. Deletion of RANKL in ILC3s and T cells increased C-C motif chemokine receptor 6 (CCR6)+ ILC3 abundance and enhanced production of interleukin-17A (IL-17A) and IL-22 in response to IL-23 and during infection with the enteric murine pathogen Citrobacter rodentium. Additionally, CCR6+ ILC3s produced higher amounts of the master transcriptional regulator RORγt at steady state in the absence of RANKL. RANKL-mediated suppression was independent of T cells, and instead occurred via interactions between CCR6+ ILC3s that expressed both RANKL and its receptor, RANK. Thus, RANK-RANKL interactions between ILC3s regulate ILC3 abundance and activation, suggesting that cell clustering may control ILC3 activity.


Subject(s)
Immunity, Innate/immunology , Lymphocyte Subsets/immunology , RANK Ligand/immunology , Animals , Cytokines/biosynthesis , Cytokines/immunology , Lymphocyte Subsets/metabolism , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/biosynthesis , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , RANK Ligand/metabolism , Receptors, CCR6/immunology
16.
Cancer Res ; 78(13): 3589-3603, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29691253

ABSTRACT

Natural killer (NK) cells express receptors specific for MHC class I (MHC-I) molecules involved in "missing-self" recognition of cancer and virus-infected cells. Here we elucidate the role of MHC-I-independent NKR-P1B:Clr-b interactions in the detection of oncogenic transformation by NK cells. Ras oncogene overexpression was found to promote a real-time loss of Clr-b on mouse fibroblasts and leukemia cells, mediated in part via the Raf/MEK/ERK and PI3K pathways. Ras-driven Clr-b downregulation occurred at the level of the Clrb (Clec2d) promoter, nascent Clr-b transcripts, and cell surface Clr-b protein, in turn promoting missing-self recognition via the NKR-P1B inhibitory receptor. Both Ras- and c-Myc-mediated Clr-b loss selectively augmented cytotoxicity of oncogene-transformed leukemia cells by NKR-P1B+ NK cells in vitro and enhanced rejection by WT mice in vivo Interestingly, genetic ablation of either one (Clr-b+/-) or two Clr-b alleles (Clr-b-/-) enhanced survival of Eµ-cMyc transgenic mice in a primary lymphoma model despite preferential rejection of Clr-b-/- hematopoietic cells previously observed following adoptive transfer into naïve wild-type mice in vivo Collectively, these findings suggest that the inhibitory NKR-P1B:Clr-b axis plays a beneficial role in innate detection of oncogenic transformation via NK-cell-mediated cancer immune surveillance, in addition to a pathologic role in the immune escape of primary lymphoma cells in Eµ-cMyc mice in vivo These results provide a model for the human NKR-P1A:LLT1 system in cancer immunosurveillance in patients with lymphoma and suggest it may represent a target for immune checkpoint therapy.Significance: A mouse model shows that an MHC-independent NK-cell recognition axis enables the detection of leukemia cells, with implications for a novel immune checkpoint therapy target in human lymphoma. Cancer Res; 78(13); 3589-603. ©2018 AACR.


Subject(s)
Immunologic Surveillance , Killer Cells, Natural/immunology , Lectins, C-Type/metabolism , Lymphoma/immunology , NK Cell Lectin-Like Receptor Subfamily B/metabolism , Receptors, Cell Surface/metabolism , Receptors, Immunologic/metabolism , Signal Transduction/immunology , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic/immunology , Disease Models, Animal , Down-Regulation , HEK293 Cells , Humans , Lectins, C-Type/immunology , Lymphoma/genetics , Lymphoma/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , NIH 3T3 Cells , NK Cell Lectin-Like Receptor Subfamily B/immunology , Receptors, Cell Surface/immunology , Receptors, Immunologic/immunology
17.
J Trauma Acute Care Surg ; 84(2): 234-244, 2018 02.
Article in English | MEDLINE | ID: mdl-29251711

ABSTRACT

BACKGROUND: Beta blockers, a class of medications that inhibit endogenous catecholamines interaction with beta adrenergic receptors, are often administered to patients hospitalized after traumatic brain injury (TBI). We tested the hypothesis that beta blocker use after TBI is associated with lower mortality, and secondarily compared propranolol to other beta blockers. METHODS: The American Association for the Surgery of Trauma Clinical Trial Group conducted a multi-institutional, prospective, observational trial in which adult TBI patients who required intensive care unit admission were compared based on beta blocker administration. RESULTS: From January 2015 to January 2017, 2,252 patients were analyzed from 15 trauma centers in the United States and Canada with 49.7% receiving beta blockers. Most patients (56.3%) received the first beta blocker dose by hospital day 1. Those patients who received beta blockers were older (56.7 years vs. 48.6 years, p < 0.001) and had higher head Abbreviated Injury Scale scores (3.6 vs. 3.4, p < 0.001). Similarities were noted when comparing sex, admission hypotension, mean Injury Severity Score, and mean Glasgow Coma Scale. Unadjusted mortality was lower for patients receiving beta blockers (13.8% vs. 17.7%, p = 0.013). Multivariable regression determined that beta blockers were associated with lower mortality (adjusted odds ratio, 0.35; p < 0.001), and propranolol was superior to other beta blockers (adjusted odds ratio, 0.51, p = 0.010). A Cox-regression model using a time-dependent variable demonstrated a survival benefit for patients receiving beta blockers (adjusted hazard ratio, 0.42, p < 0.001) and propranolol was superior to other beta blockers (adjusted hazard ratio, 0.50, p = 0.003). CONCLUSION: Administration of beta blockers after TBI was associated with improved survival, before and after adjusting for the more severe injuries observed in the treatment cohort. This study provides a robust evaluation of the effects of beta blockers on TBI outcomes that supports the initiation of a multi-institutional randomized control trial. LEVEL OF EVIDENCE: Therapeutic/care management, level III.


Subject(s)
Adrenergic beta-Antagonists/pharmacology , Brain Injuries, Traumatic/drug therapy , Critical Illness/therapy , Disease Management , Societies, Medical , Trauma Centers/statistics & numerical data , Traumatology , Aged , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/epidemiology , Canada/epidemiology , Female , Humans , Incidence , Injury Severity Score , Male , Middle Aged , Prospective Studies , Survival Rate/trends , United States/epidemiology
18.
PLoS Pathog ; 13(10): e1006690, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29059238

ABSTRACT

Bacillus anthracis, the causative agent of anthrax, secretes lethal toxin that down-regulates immune functions. Translocation of B. anthracis across mucosal epithelia is key for its dissemination and pathogenesis. Group 3 innate lymphocytes (ILC3s) are important in mucosal barrier maintenance due to their expression of the cytokine IL-22, a critical regulator of tissue responses and repair during homeostasis and inflammation. We found that B. anthracis lethal toxin perturbed ILC3 function in vitro and in vivo, revealing an unknown IL-23-mediated MAPK signaling pathway. Lethal toxin had no effects on the canonical STAT3-mediated IL-23 signaling pathway. Rather lethal toxin triggered the loss of several MAP2K kinases, which correlated with reduced activation of downstream ERK1/2 and p38, respectively. Inhibition studies showed the importance of MAPK signaling in IL-23-mediated production of IL-22. Our finding that MAPK signaling is required for optimal IL-22 production in ILC3s may lead to new approaches for targeting IL-22 biology.


Subject(s)
Anthrax/immunology , Antigens, Bacterial/immunology , Bacillus anthracis/immunology , Bacterial Toxins/immunology , Lymphocytes/immunology , MAP Kinase Signaling System/immunology , Animals , Bacillus anthracis/pathogenicity , Humans , Interleukin-23/immunology , Interleukins/immunology , Mice , Virulence/immunology , Interleukin-22
19.
Sci Rep ; 7(1): 3501, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28615725

ABSTRACT

For many years, human peripheral blood natural killer (NK) cells have been divided into functionally distinct CD3- CD56bright CD16- and CD3- CD56dim CD16+ subsets. Recently, several groups of innate lymphoid cells (ILC), distinct from NK cells in development and function, have been defined in mouse. A signature of genes present in mouse ILC except NK cells, defined by Immunological Genome Project studies, is significantly over-represented in human CD56bright cells, by gene set enrichment analysis. Conversely, the signature genes of mouse NK cells are enriched in human CD56dim cells. Correlations are based upon large differences in expression of a few key genes. CD56bright cells show preferential expression of ILC-associated IL7R (CD127), TNFSF10 (TRAIL), KIT (CD117), IL2RA (CD25), CD27, CXCR3, DPP4 (CD26), GPR183, and MHC class II transcripts and proteins. This could indicate an ontological relationship between human CD56bright cells and mouse CD127+ ILC, or conserved networks of transcriptional regulation. In line with the latter hypothesis, among transcription factors known to impact ILC or NK cell development, GATA3, TCF7 (TCF-1), AHR, SOX4, RUNX2, and ZEB1 transcript levels are higher in CD56bright cells, while IKZF3 (AIOLOS), TBX21 (T-bet), NFIL3 (E4BP4), ZEB2, PRDM1 (BLIMP1), and RORA mRNA levels are higher in CD56dim cells.


Subject(s)
CD3 Complex/genetics , CD56 Antigen/genetics , Interleukin-7 Receptor alpha Subunit/genetics , Killer Cells, Natural/metabolism , Transcriptome , Animals , CD3 Complex/blood , CD3 Complex/immunology , CD56 Antigen/blood , CD56 Antigen/immunology , Gene Expression Profiling , Humans , Interleukin-7 Receptor alpha Subunit/blood , Interleukin-7 Receptor alpha Subunit/immunology , Killer Cells, Natural/immunology , Mice , Species Specificity
20.
Cell ; 169(1): 58-71.e14, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28340350

ABSTRACT

Natural killer (NK) cells play a key role in innate immunity by detecting alterations in self and non-self ligands via paired NK cell receptors (NKRs). Despite identification of numerous NKR-ligand interactions, physiological ligands for the prototypical NK1.1 orphan receptor remain elusive. Here, we identify a viral ligand for the inhibitory and activating NKR-P1 (NK1.1) receptors. This murine cytomegalovirus (MCMV)-encoded protein, m12, restrains NK cell effector function by directly engaging the inhibitory NKR-P1B receptor. However, m12 also interacts with the activating NKR-P1A/C receptors to counterbalance m12 decoy function. Structural analyses reveal that m12 sequesters a large NKR-P1 surface area via a "polar claw" mechanism. Polymorphisms in, and ablation of, the viral m12 protein and host NKR-P1B/C alleles impact NK cell responses in vivo. Thus, we identify the long-sought foreign ligand for this key immunoregulatory NKR family and reveal how it controls the evolutionary balance of immune recognition during host-pathogen interplay.


Subject(s)
Killer Cells, Natural/immunology , Muromegalovirus/immunology , Receptors, Natural Killer Cell/immunology , Viral Proteins/metabolism , Animals , Antigens, Ly/metabolism , Cell Line , HEK293 Cells , Host-Pathogen Interactions , Humans , Immune Evasion , Immunity, Innate , Mice , NIH 3T3 Cells , NK Cell Lectin-Like Receptor Subfamily B/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...