Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Harefuah ; 161(9): 552-555, 2022 Sep.
Article in Hebrew | MEDLINE | ID: mdl-36168157

ABSTRACT

INTRODUCTION: This is a review article which examines the use of erythrocyte sedimentation rate (ESR) compared to C-reactive protein in current medicine. The objective is to review and present a purposeful description of the medical literature in the question of the specificity and sensitivity of each of the markers in many common diseases. Described are normal ESR, the methods' limitations, and the etiologies of high and low ESR. Additionally, explained are the implementation and measurement of bedside ESR and factors which distort the results.


Subject(s)
C-Reactive Protein , Biomarkers , Blood Sedimentation , C-Reactive Protein/analysis , Humans
2.
Harefuah ; 161(9): 581-582, 2022 09.
Article in Hebrew | MEDLINE | ID: mdl-36168163
3.
Sci Rep ; 11(1): 14644, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34282238

ABSTRACT

Inhibition of extracellular glutamate (Glu) release decreases proliferation and invasion, induces apoptosis, and inhibits melanoma metastatic abilities. Previous studies have shown that Blood-glutamate scavenging (BGS), a novel treatment approach, has been found to be beneficial in attenuating glioblastoma progression by reducing brain Glu levels. Therefore, in this study we evaluated the ability of BGS treatment to inhibit brain metastatic melanoma progression in-vivo. RET melanoma cells were implanted in C56BL/6J mice to induce brain melanoma tumors followed by treatment with BGS or vehicle administered for fourteen days. Bioluminescent imaging was conducted to evaluate tumor growth, and plasma/CSF Glu levels were monitored throughout. Immunofluorescence staining of Ki67 and 53BP1 was used to analyze tumor cell proliferation and DNA double-strand breaks. In addition, we analyzed CD8, CD68, CD206, p-STAT1 and iNOS expression to evaluate alterations in tumor micro-environment and anti-tumor immune response due to treatment. Our results show that BGS treatment reduces CSF Glu concentration and consequently melanoma growth in-vivo by decreasing tumor cell proliferation and increasing pro-apoptotic signaling in C56BL/6J mice. Furthermore, BGS treatment supported CD8+ cell recruitment and CD68+ macrophage invasion. These findings suggest that BGS can be of potential therapeutic relevance in the treatment of metastatic melanoma.


Subject(s)
Aspartate Aminotransferase, Cytoplasmic/administration & dosage , Brain Neoplasms/drug therapy , Glutamic Acid/metabolism , Melanoma/drug therapy , Oxaloacetic Acid/administration & dosage , Animals , Apoptosis/drug effects , Aspartate Aminotransferase, Cytoplasmic/pharmacology , Brain Neoplasms/pathology , Brain Neoplasms/secondary , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Therapy, Combination , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/secondary , Humans , Melanoma/pathology , Mice , Mice, Inbred C57BL , Molecular Targeted Therapy/methods , Oxaloacetic Acid/pharmacology , Recombinant Proteins/administration & dosage , Signal Transduction/drug effects , Tumor Microenvironment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...