Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 194(3): 1834-1852, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38057162

ABSTRACT

Calcium is known to improve seed-germination rates under salt stress. We investigated the involvement of calcium ions (Ca2+) in regulating HIGH-AFFINITY K+ TRANSPORTER 1 (HKT1; 1), which encodes a Na+/K+ transporter, and its post-translational regulator TYPE 2C PROTEIN PHOSPHATASE 49 (PP2C49), in germinating Arabidopsis (Arabidopsis thaliana) seedlings. Germination rates of hkt1 mutant seeds under salt stress remained unchanged by CaCl2 treatment in wild-type Arabidopsis, whereas pp2c49 mutant seeds displayed improved salt-stress tolerance in the absence of CaCl2 supplementation. Analysis of HKT1;1 and PP2C49 promoter activity revealed that CaCl2 treatment results in radicle-focused expression of HKT1;1 and reduction of the native radicle-exclusive expression of PP2C49. Ion-content analysis indicated that CaCl2 treatment improves K+ retention in germinating wild-type seedlings under salt stress, but not in hkt1 seedlings. Transgenic seedlings designed to exclusively express HKT1;1 in the radicle during germination displayed higher germination rates under salt stress than the wild type in the absence of CaCl2 treatment. Transcriptome analysis of germinating seedlings treated with CaCl2, NaCl, or both revealed 118 upregulated and 94 downregulated genes as responsive to the combined treatment. Bioinformatics analysis of the upstream sequences of CaCl2-NaCl-treatment-responsive upregulated genes revealed the abscisic acid response element CACGTGTC, a potential CaM-binding transcription activator-binding motif, as most prominent. Our findings suggest a key role for Ca2+ in mediating salt-stress responses during germination by regulating genes that function to maintain Na+ and K+ homeostasis, which is vital for seed germination under salt stress.


Subject(s)
Arabidopsis , Germination , Germination/genetics , Arabidopsis/genetics , Calcium , Calcium Chloride , Seeds/genetics , Sodium Chloride/pharmacology , Salt Stress/genetics , Seedlings/genetics , Ions , Membrane Transport Proteins
2.
Front Neurol ; 14: 1135630, 2023.
Article in English | MEDLINE | ID: mdl-37200782

ABSTRACT

Objective: Carriers of Fragile X premutation may have associated medical comorbidities, such as Fragile X-associated tremor and ataxia (FXTAS) and Fragile X-associated premature ovarian insufficiency (FXPOI). We examined the Fragile X premutation effect on cognition, and we assumed that there is a direct correlation between the continuous spectrum of specific learning and attention deficits to the number of CGG repeats on the FMR1 gene. Methods: A total of 108 women were referred to our center due to a related Fragile X syndrome (FXS) patient, 79 women carried a premutation of 56-199 repeats, and 19 women carried a full mutation of more than 200 CGG repeats on FMR1 gene. Genetic results of CGG repeats, demographic information, structured questionnaires for ADHD, learning disabilities of language and mathematics, and independence level were analyzed in women carrying the FMR1 premutation and compared to the group carrying the full mutation. Women with FXS and FXTAS were excluded. Results: When analyzed as a continuum, there was a significant increase in the following complaints which were associated with a higher number of repeats: specific daily function skills such as driving a car, writing checks, disorientation in directions, and also specific learning difficulties such as spelling and math difficulties. Additionally, when tested as a categorical independent variable, we observe that women with the full mutation were more likely to have ADHD or other learning disability diagnoses in the past than during premutation (<200 CGG repetitions). Conclusion: Specific learning and attention difficulties and resulting daily function difficulties correlate with an increased number of CGG repeats and are more likely to be associated as a common feature of premutation and full mutation in a female premutation carrier. Despite evidence of learning and attention difficulties, it is encouraging that most female carriers of the premutation and full mutation function well in most areas. Nevertheless, they face significant difficulties in specific areas of functioning such as driving, and confusion in times and schedules. Those daily function skills are mostly impacted by dyscalculia, right and left disorientation, and attention difficulties. This may aid to design specific interventions to address specific learning deficits in order to improve daily function skills and quality of life.

3.
Front Plant Sci ; 13: 991983, 2022.
Article in English | MEDLINE | ID: mdl-36160961

ABSTRACT

Storage at low temperatures is a common practice to prolong postharvest life of fruit and vegetables with a minimal negative impact on human/environmental health. Storage at low temperatures, however, can be restricted due to produce susceptibility to non-freezing chilling temperatures, when injuries such as physiological disorders and decays may result in unmarketable produce. We have investigated tomato fruit response to postharvest chilling stress in a recombinant inbred line (RIL) population developed from a cross between a chilling-sensitive cultivated tomato (Solanum lycopersicum L.) breeding line and a chilling-tolerant inbred accession of the tomato wild species S. pimpinellifolium L. Screening of the fruit of 148 RILs under cold storage (1.5°C) indicated presence of significant variations in chilling tolerance, manifested by varying degrees of fruit injury. Two extremely contrasting groups of RILs were identified, chilling-tolerant and chilling-sensitive RILs. The RILs in the two groups were further investigated under chilling stress conditions, and several physiological parameters, including weight loss, chlorophyll fluorescence parameters Fv/Fm, and Performance Index (PI), were determined to be efficient markers for identifying response to chilling stress in postharvest fruit. The Fv/Fm values reflected the physiological damages endured by the fruit after cold storage, and PI was a sensitive marker for early changes in photosystem II function. These two parameters were early indicators of chilling response before occurrence of visible chilling injuries. Antioxidant activities and ascorbic acid content were significantly higher in the chilling-tolerant than the chilling-sensitive lines. Further, the expression of C-repeat/DREB binding factors (CBFs) genes swiftly changed within 1-hr of fruit exposure to the chilling temperature, and the SlCBF1 transcript level was generally higher in the chilling-tolerant than chilling-sensitive lines after 2-hr exposure to the low temperature. This research demonstrates the presence of potential genetic variation in fruit chilling tolerance in the tomato RIL population. Further investigation of the RIL population is underway to better understand the genetic, physiological, and biochemical mechanisms involved in postharvest fruit chilling tolerance in tomato.

SELECTION OF CITATIONS
SEARCH DETAIL
...