Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Aquat Toxicol ; 224: 105499, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32416570

ABSTRACT

Pharmaceutical substances are ubiquitous in the aquatic environment and their concentration levels typically range from ng/L up to several µg/L. Furthermore, as those compounds are designed to be highly biologically active, assessing their impacts on non-target organisms is important. Here, we conducted a mesocosm experiment testing a mixture of five pharmaceuticals (diclofenac, carbamazepine, irbesartan, acetaminophen and naproxen) on fish, three-spined stickleback (Gasterosteus aculeatus). The mixture concentration levels were chosen on the basis of the contamination of the Meuse river in Belgium which had been measured previously during a monitoring campaign undertaken in 2015 and 2016. Three nominal mixture concentration levels were tested: the lowest concentration level mixture was composed by environmentally-relevant concentrations that approximate average realistic values for each pharmaceuticals (Mx1); the two other levels were 10 and 100 times these concentrations. Although no impact on stickleback prey was observed, the mixture significantly impaired the survival of female fish introduced in the mesocosms at the highest treatment level without causing other major differences on fish population structure. Impacts on condition factors of adults and juveniles were also observed at both individual and population levels. Using a modelling approach with an individual-based model coupled to a bioenergetic model (DEB-IBM), we concluded that chronic exposure to environmentally-relevant concentrations of five pharmaceuticals often detected in the rivers did not appear to strongly affect the three-spined stickleback populations. Mechanisms of population regulation may have counteracted the mixture impacts in the mesocosms.


Subject(s)
Pharmaceutical Preparations/analysis , Rivers/chemistry , Smegmamorpha/growth & development , Water Pollutants, Chemical/toxicity , Acetaminophen/analysis , Acetaminophen/toxicity , Animals , Belgium , Carbamazepine/analysis , Carbamazepine/toxicity , Diclofenac/analysis , Diclofenac/toxicity , Female , Models, Theoretical , Naproxen/analysis , Naproxen/toxicity , Population Dynamics , Smegmamorpha/physiology , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 692: 854-867, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31539991

ABSTRACT

Bisphenol A (BPA), a well-known endocrine-disrupting chemical, is ubiquitously present in the aquatic environment. Its impacts at the population level on three-spined sticklebacks (Gasterosteus aculeatus) have been studied in artificial streams with low-dose BPA concentrations. The causes explaining the observed effects remained unclear. Here, we used an individual-based model coupled to a Dynamic Energy Budget model to (i) assess the potential of modelling to predict impacts at the population level using individual level laboratory ecotoxicological endpoints and (ii) provide insight on the mechanisms of BPA toxicity in these mesocosms. To do that, both direct and indirect effects of BPA on three-spined sticklebacks were incorporated in the model. Indeed, direct BPA effects on fish have been identified based on literature data whereas indirect effects on sticklebacks have been taken into account using sampling data of their prey from the exposed artificial streams. Results of the modelling showed that direct BPA effects on fish (impacts on gonad formation, growth, male reproductive behavior, eggs and larvae survival) mainly explained the three-spined stickleback population structure in the mesocosms, but indirect effects were not negligible. Hence, this study showed the potential of modelling in risk assessment to predict the impacts on fish population viability from behavioral and physiological effects measured on organisms.


Subject(s)
Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Environmental Exposure/adverse effects , Phenols/toxicity , Smegmamorpha/physiology , Water Pollutants, Chemical/toxicity , Animals , Female , Male , Models, Biological , Population Dynamics , Random Allocation , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL
...