Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
IUBMB Life ; 70(12): 1267-1274, 2018 12.
Article in English | MEDLINE | ID: mdl-30291814

ABSTRACT

The mitochondrial DNA of diplonemid and kinetoplastid protists is known for its suite of bizarre features, including the presence of concatenated circular molecules, extensive trans-splicing and various forms of RNA editing. Here we report on the existence of another remarkable characteristic: hyper-inflated DNA content. We estimated the total amount of mitochondrial DNA in four kinetoplastid species (Trypanosoma brucei, Trypanoplasma borreli, Cryptobia helicis, and Perkinsela sp.) and the diplonemid Diplonema papillatum. Staining with 4',6-diamidino-2-phenylindole and RedDot1 followed by color deconvolution and quantification revealed massive inflation in the total amount of DNA in their organelles. This was further confirmed by electron microscopy. The most extreme case is the ∼260 Mbp of DNA in the mitochondrion of Diplonema, which greatly exceeds that in its nucleus; this is, to our knowledge, the largest amount of DNA described in any organelle. Perkinsela sp. has a total mitochondrial DNA content ~6.6× greater than its nuclear genome. This mass of DNA occupies most of the volume of the Perkinsela cell, despite the fact that it contains only six protein-coding genes. Why so much DNA? We propose that these bloated mitochondrial DNAs accumulated by a ratchet-like process. Despite their excessive nature, the synthesis and maintenance of these mtDNAs must incur a relatively low cost, considering that diplonemids are one of the most ubiquitous and speciose protist groups in the ocean. © 2018 IUBMB Life, 70(12):1267-1274, 2018.


Subject(s)
DNA, Mitochondrial/genetics , Euglenozoa/genetics , Kinetoplastida/genetics , Mitochondria/genetics , DNA, Mitochondrial/isolation & purification , DNA, Mitochondrial/ultrastructure , Phylogeny , Trans-Splicing/genetics
2.
Sci Rep ; 7(1): 11688, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28916813

ABSTRACT

Endosymbiotic relationships between eukaryotic and prokaryotic cells are common in nature. Endosymbioses between two eukaryotes are also known; cyanobacterium-derived plastids have spread horizontally when one eukaryote assimilated another. A unique instance of a non-photosynthetic, eukaryotic endosymbiont involves members of the genus Paramoeba, amoebozoans that infect marine animals such as farmed fish and sea urchins. Paramoeba species harbor endosymbionts belonging to the Kinetoplastea, a diverse group of flagellate protists including some that cause devastating diseases. To elucidate the nature of this eukaryote-eukaryote association, we sequenced the genomes and transcriptomes of Paramoeba pemaquidensis and its endosymbiont Perkinsela sp. The endosymbiont nuclear genome is ~9.5 Mbp in size, the smallest of a kinetoplastid thus far discovered. Genomic analyses show that Perkinsela sp. has lost the ability to make a flagellum but retains hallmark features of kinetoplastid biology, including polycistronic transcription, trans-splicing, and a glycosome-like organelle. Mosaic biochemical pathways suggest extensive 'cross-talk' between the two organisms, and electron microscopy shows that the endosymbiont ingests amoeba cytoplasm, a novel form of endosymbiont-host communication. Our data reveal the cell biological and biochemical basis of the obligate relationship between Perkinsela sp. and its amoeba host, and provide a foundation for understanding pathogenicity determinants in economically important Paramoeba.


Subject(s)
Amoebozoa/growth & development , Amoebozoa/metabolism , Kinetoplastida/growth & development , Kinetoplastida/metabolism , Symbiosis , Amoebozoa/genetics , Genome, Protozoan , Kinetoplastida/genetics , Sequence Analysis, DNA
3.
mBio ; 8(1)2017 01 31.
Article in English | MEDLINE | ID: mdl-28143982

ABSTRACT

A dozen mRNAs are edited by multiple insertions and/or deletions of uridine residues in the mitochondrion of Trypanosoma brucei Several protein complexes have been implicated in performing this type of RNA editing, including the mitochondrial RNA-binding complex 1 (MRB1). Two paralogous novel RNA-binding proteins, MRB8170 and MRB4160, are loosely associated with the core MRB1 complex. Their roles in RNA editing and effects on target mRNAs are so far not well understood. In this study, individual-nucleotide-resolution UV-cross-linking and affinity purification (iCLAP) revealed a preferential binding of both proteins to mitochondrial mRNAs, which was positively correlated with their extent of editing. Integrating additional in vivo and in vitro data, we propose that binding of MRB8170 and/or MRB4160 onto pre-mRNA marks it for the initiation of editing and that initial binding of both proteins may facilitate the recruitment of other components of the RNA editing/processing machinery to ensure efficient editing. Surprisingly, MRB8170 also binds never-edited mRNAs, suggesting that at least this paralog has an additional role outside RNA editing to shape the mitochondrial transcriptome. IMPORTANCE: Trypanosoma brucei mitochondrial mRNAs undergo maturation by RNA editing, a unique process involving decrypting open reading frames by the precise deletion and/or insertion of uridine (U) residues at specific positions on an mRNA. This process is catalyzed by multiprotein complexes, such as the RNA editing core complex, which provides the enzymatic activities needed for U insertion/deletion at a single editing site. Less well understood is how RNA editing occurs throughout an mRNA bearing multiple sites. To address this question, we mapped at single-nucleotide resolution the RNA interactions of two unique RNA-binding proteins (RBPs). These RBPs are part of the mitochondrial RNA-binding complex 1, hypothesized to mediate multiple rounds of RNA editing. Both RBPs were shown to mark mRNAs for the process in correlation with the number of editing sites on the transcript. Surprisingly, one also binds mRNAs that bypass RNA editing, indicating that it may have an additional role outside RNA editing.


Subject(s)
Mitochondria/metabolism , Protozoan Proteins/metabolism , RNA Editing , RNA Precursors/metabolism , Trypanosoma brucei brucei/metabolism , Protein Binding
4.
Curr Biol ; 26(24): R1290-R1292, 2016 12 19.
Article in English | MEDLINE | ID: mdl-27997843

ABSTRACT

Environmental molecular sequence surveys have opened a window on the hidden riches of the microbial biosphere. Recent genetic 'barcoding' and single-cell genomics studies have provided a snapshot of the biology of diplonemids - abundant, diverse, marine heterotrophic protists whose ecological roles are becoming clearer.


Subject(s)
Biological Evolution , Euglenozoa/genetics , Genetic Variation/genetics , Ecosystem , Euglenozoa/physiology , Genome, Protozoan , Genomics/methods
5.
mBio ; 6(6): e01498-15, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26628723

ABSTRACT

UNLABELLED: Perkinsela is an enigmatic early-branching kinetoplastid protist that lives as an obligate endosymbiont inside Paramoeba (Amoebozoa). We have sequenced the highly reduced mitochondrial genome of Perkinsela, which possesses only six protein-coding genes (cox1, cox2, cox3, cob, atp6, and rps12), despite the fact that the organelle itself contains more DNA than is present in either the host or endosymbiont nuclear genomes. An in silico analysis of two Perkinsela strains showed that mitochondrial RNA editing and processing machineries typical of kinetoplastid flagellates are generally conserved, and all mitochondrial transcripts undergo U-insertion/deletion editing. Canonical kinetoplastid mitochondrial ribosomes are also present. We have developed software tools for accurate and exhaustive mapping of transcriptome sequencing (RNA-seq) reads with extensive U-insertions/deletions, which allows detailed investigation of RNA editing via deep sequencing. With these methods, we show that up to 50% of reads for a given edited region contain errors of the editing system or, less likely, correspond to alternatively edited transcripts. IMPORTANCE: Uridine insertion/deletion-type RNA editing, which occurs in the mitochondrion of kinetoplastid protists, has been well-studied in the model parasite genera Trypanosoma, Leishmania, and Crithidia. Perkinsela provides a unique opportunity to broaden our knowledge of RNA editing machinery from an evolutionary perspective, as it represents the earliest kinetoplastid branch and is an obligatory endosymbiont with extensive reductive trends. Interestingly, up to 50% of mitochondrial transcripts in Perkinsela contain errors. Our study was complemented by use of newly developed software designed for accurate mapping of extensively edited RNA-seq reads obtained by deep sequencing.


Subject(s)
Gene Deletion , Kinetoplastida/genetics , Mitochondria/genetics , RNA Editing , Amoebozoa/parasitology , Computational Biology , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , High-Throughput Nucleotide Sequencing , Kinetoplastida/growth & development , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...