Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22278425

ABSTRACT

The SARS-CoV-2 global pandemic has fuelled the generation of vaccines at an unprecedented pace and scale. However, many challenges remain, including: the emergence of vaccine-resistant mutant viruses, vaccine stability during storage and transport, waning vaccine-induced immunity, and concerns about infrequent adverse events associated with existing vaccines. Here, we report on a protein subunit vaccine comprising the receptor-binding domain (RBD) of the ancestral SARS-CoV-2 spike protein, dimerised with an immunoglobulin IgG1 Fc domain. These were tested in conjunction with three different adjuvants: a TLR2 agonist R4-Pam2Cys, an NKT cell agonist glycolipid -Galactosylceramide, or MF59(R) squalene oil-in-water adjuvant. Each formulation drove strong neutralising antibody (nAb) responses and provided durable and highly protective immunity against lower and upper airway infection in mouse models of COVID-19. We have also developed an RBD-human IgG1 Fc vaccine with an RBD sequence of the highly immuno-evasive beta variant (N501Y, E484K, K417N). This beta variant RBD vaccine, combined with MF59(R) adjuvant, induced strong protection in mice against the beta strain as well as the ancestral strain. Furthermore, when used as a third dose booster vaccine following priming with whole spike vaccine, anti-sera from beta-RBD-Fc immunised mice increased titres of nAb against other variants including alpha, delta, delta+, gamma, lambda, mu, and omicron BA.1 and BA.2. These results demonstrated that an RBD-Fc protein subunit/MF59(R) adjuvanted vaccine can induce high levels of broad nAbs, including when used as a booster following prior immunisation of mice with whole ancestral-strain Spike vaccines. This vaccine platform offers a potential approach to augment some of the currently approved vaccines in the face of emerging variants of concern, and it has now entered a phase I clinical trial.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-309914

ABSTRACT

Respiratory viruses such as coronaviruses represent major ongoing global threats, causing epidemics and pandemics with huge economic burden. Rapid spread of virus through populations poses an enormous challenge for outbreak control. Like all respiratory viruses, the most recent novel human coronavirus SARS-CoV-2, initiates infection in the upper respiratory tract (URT). Infected individuals are often asymptomatic, yet highly infectious and readily transmit virus. A therapy that restricts initial replication in the URT has the potential to prevent progression of severe lower respiratory tract disease as well as limiting person-to-person transmission. We show that prophylactic intra-nasal administration of the TLR2/6 agonist INNA-051 in a SARS-CoV-2 ferret infection model effectively reduces levels of viral RNA in the nose and throat. The results of our study support clinical development of a therapy based on prophylactic TLR2/6 innate immune activation in the URT to reduce SARS-CoV-2 transmission and provide protection against COVID-19.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20098459

ABSTRACT

SARS-CoV-2, the pandemic coronavirus that causes COVID-19, has infected millions worldwide, causing unparalleled social and economic disruptions. COVID-19 results in higher pathogenicity and mortality in the elderly compared to children. Examining baseline SARS-CoV-2 cross-reactive coronavirus immunological responses, induced by circulating human coronaviruses, is critical to understand such divergent clinical outcomes. The cross-reactivity of coronavirus antibody responses of healthy children (n=89), adults (n=98), elderly (n=57), and COVID-19 patients (n=19) were analysed by systems serology. While moderate levels of cross-reactive SARS-CoV-2 IgG, IgM, and IgA were detected in healthy individuals, we identified serological signatures associated with SARS-CoV-2 antigen-specific Fc{gamma} receptor binding, which accurately distinguished COVID-19 patients from healthy individuals and suggested that SARS-CoV-2 induces qualitative changes to antibody Fc upon infection, enhancing Fc{gamma} receptor engagement. Vastly different serological signatures were observed between healthy children and elderly, with markedly higher cross-reactive SARS-CoV-2 IgA and IgG observed in elderly, whereas children displayed elevated SARS-CoV-2 IgM, including receptor binding domain-specific IgM with higher avidity. These results suggest that less-experienced humoral immunity associated with higher IgM, as observed in children, may have the potential to induce more potent antibodies upon SARS-CoV-2 infection. These key insights will inform COVID-19 vaccination strategies, improved serological diagnostics and therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL
...