Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biodegradation ; 32(2): 145-163, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33586077

ABSTRACT

Soil is the recipient of organic pollutants as a consequence of anthropogenic activities. Hydrocarbons are contaminants that pose a risk to human and environmental health. Bioremediation of aging contaminated soils is a challenge due to the low biodegradability of contaminants as a result of their interaction with the soil matrix. The aim of this work was to evaluate the effect of both composting and the addition of mature compost on a soil chronically contaminated with hydrocarbons, focusing mainly on the recovery of soil functions and transformations of the soil matrix as well as microbial community shifts. The initial pollution level was 214 ppm of polycyclic aromatic hydrocarbons (PAHs) and 2500 ppm of aliphatic hydrocarbons (AHs). Composting and compost addition produced changes on soil matrix that promoted the release of PAHs (5.7 and 15 % respectively) but not the net PAH elimination. Interestingly, composting stimulated AHs elimination (about 24 %). The lack of PAHs elimination could be attributed to the insufficient PAHs content to stimulate the microbial degrading capacity, and the preferential consumption of easily absorbed C sources by the bacterial community. Despite the low PAH catabolic potential of the aging soil, metabolic shift was driven by the addition of organic matter, which could be monitored by the ratio of Proteobacteria to Actinobacteria combined with E4/E6 ratio. Regarding the quality of the soil, the nutrients provided by the exogenous organic matter contributed to the recovery of the global functions and species diversity of the soil along with the reduction of phytotoxicity.


Subject(s)
Composting , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Biodegradation, Environmental , Humans , Hydrocarbons , Polycyclic Aromatic Hydrocarbons/analysis , Soil , Soil Microbiology , Soil Pollutants/analysis
2.
Biomater Sci ; 9(7): 2608-2619, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33595000

ABSTRACT

Photothermal therapy (PTT) is a noninvasive treatment for cancer relying on the incorporation of NIR-light absorbing nanomaterials into cells, which upon illumination release heat causing thermally induced cell death. We prove that irradiation of aqueous suspensions of poly(vinylpyrrolidone)-coated silver nanoplates (PVPAgNP) or PVPAgNP in HeLa cells with red or NIR lasers causes a sizeable photothermal effect, which in cells can be visualized with the temperature sensing fluorophore Rhodamine B (RhB) using spinning disk confocal fluorescence microscopy or fluorescence lifetime imaging. Upon red-light irradiation of cells that were incubated with both, RhB and PVPAgNP at concentrations with no adverse effects on cell viability, a substantial heat release is detected. Initiation of cell death by photothermal effect is observed by positive signals of fluorescent markers for early and late apoptosis. Surprisingly, a new nanomaterial-assisted cell killing mode is operating when PVPAgNP-loaded HeLa cells are excited with moderate powers of fs-pulsed NIR light. Small roundish areas are generated with bright and fast (<1 ns) decaying emission, which expand fast and destroy the whole cell in seconds. This characteristic emission is assigned to efficient optical breakdown initiation around the strongly absorbing PVPAgNP leading to plasma formation that spreads fast through the cell.


Subject(s)
Photothermal Therapy , Silver , HeLa Cells , Humans , Light , Microscopy, Fluorescence
3.
Nanotechnology ; 32(9): 095105, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33137803

ABSTRACT

Immobilization of PEG-covered silicon dots, PEGSiDs, on glass substrates was performed following a simple strategy involving particle embedding by a sol-gel process forming a silica film on glass slides. The obtained films, denoted as fSiO x -PEGSiD, constitute a water-wettable, strongly supported, photoluminescent glass coating. The films showed high capacity for photosensitizing singlet oxygen (1O2) in the UVA when immersed in water. Staphylococcus aureus colonies formed on fSiO x -PEGSiDs modified glasses revealed the inhibition of bacterial adhesion and bacterial growth leading to the formation of loosely-packed and smaller S. aureus colonies. Upon 350 nm light irradiation of the biofilmed fSiO x -PEGSiDs -modified glasses, S. aureus growth was inhibited and bacteria killed reducing the number of living bacteria by three orders of magnitude. Eradication of attached bacteria was achieved by the synergistic effect exerted by a less adherent fSiO x -PEGSiDs surface that inhibits biofilm formation and the ability of the surface to photosensitize 1O2 to kill bacteria.


Subject(s)
Biofilms/drug effects , Photosensitizing Agents/pharmacology , Silicon/pharmacology , Singlet Oxygen/pharmacology , Staphylococcus aureus/growth & development , Bacterial Adhesion/drug effects , Drug Synergism , Glass , Microbial Viability/drug effects , Photosensitizing Agents/chemistry , Polyethylene Glycols/chemistry , Quantum Dots , Silicon/chemistry , Silicon Dioxide/chemistry , Singlet Oxygen/chemistry , Staphylococcus aureus/drug effects , Wettability
4.
Phys Chem Chem Phys ; 22(17): 9534-9542, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32319483

ABSTRACT

Carminic acid (CA) and other related compounds have been widely used as dyes in cultural heritage, cosmetics and the food industry. Therefore, the study of their properties upon photoexcitation is particularly important. In this work, the photophysical and photochemical properties of CA, carminic lake and other related pigments in aqueous solutions are revisited. Novel quantitative information regarding the fate of the photoexcited states is provided including the efficiency of reactive oxygen species (ROS) photosensitized production (i.e., singlet oxygen and hydrogen peroxide) as well as the efficiency of nonradiative deactivation pathways. Laser-induced optoacoustic spectroscopy (LIOAS) data revealed that for all the investigated compounds, almost all the absorbed energy is released as prompt heat to the media. This is in agreement with the fact that other deactivation pathways, including fluorescence (ΦF ∼ 10-3-10-5), photochemical degradation (ΦR ∼ 10-4) and/or photosensitized ROS formation (ΦH2O2 < 10-5 and ΦΔ âˆ¼ 0), are negligible or null. In addition, a comprehensive investigation of the photodegradation of CA and lake is herein reported. The influence of different experimental parameters such as irradiation wavelength and oxygen partial pressure was evaluated. UV-vis absorption and fluorescence emission spectroscopy in combination with chemometric data analysis were used to elucidate the relevant aspects of the photodegradation mechanism involved and the spectroscopic features of the photoproducts generated. In aqueous media, CA follows an O2-dependent photochemical degradation when subject to elapsed photoexcitation in the UVB, UVA and visible regions. The photoproduct profile depends on the excitation wavelength giving rise to quite distinctive spectroscopic profiles. With respect to lake, our data suggest that upon photoexcitation, this pigment releases a CA-like chromophore that follows a similar fate to CA.

5.
Chemistry ; 24(49): 12902-12911, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-29675830

ABSTRACT

ReI -polypyridyl complexes have interesting and distinctive photochemical and photosensitizing properties. This work describes the capability to induce (or photoinduce) DNA damage of three ReI -complexes with a naturally occurring alkaloid called norharmane (nHo) as ligand: [Re(CO)3 (nHo)(L)]CF3 SO3 where L=2,2'-bipyridine (ReBpy), phenanthroline (RePhen) or dipyrido[3,2-a:2',3'-c]phenazine (ReDppz). The interaction of the complexes with DNA was investigated by steady-state and time-resolved spectroscopy. Data show that the mode and strength of interaction depend on the chemical structure of the bidentate ligand. The complexes show a major static contribution to the overall interaction, giving rise to the formation of noncovalent adducts with DNA, and the particular trend observed was RePhen>ReDppz>ReBpy. Photo-oxidation at the purine bases represents the major DNA damaging mechanism. RePhen also induces single-strand breaks in a yield similar to that of base damage, suggesting an additional photosensitizing pathway. We also performed the Ames test to evaluate the cytotoxic and mutagenic properties of both non-irradiated and photoexcited complexes. RePhen, but not the other complexes, turned out to be both toxic and phototoxic for the bacteria.


Subject(s)
2,2'-Dipyridyl/chemistry , Carbolines/chemistry , Coordination Complexes/chemistry , DNA Damage/drug effects , DNA/chemistry , Rhenium/chemistry , Coordination Complexes/toxicity , Ligands , Light , Mutagenicity Tests , Oxidants, Photochemical/chemistry , Oxidation-Reduction , Reactive Oxygen Species/chemistry , Salmonella typhimurium/drug effects , Singlet Oxygen/chemistry
6.
Photochem Photobiol ; 94(1): 36-51, 2018 01.
Article in English | MEDLINE | ID: mdl-28741707

ABSTRACT

In the present work, we have synthesized and fully characterized the photophysical and photochemical properties of a selected group of N-methyl-ß-carboline derivatives (9-methyl-ß-carbolines and iodine salts of 2-methyl- and 2,9-dimethyl-ß-carbolinium) in aqueous solutions, in the pH range 4.0-14.5. Moreover, despite the quite extensive studies reported in the literature regarding the overall photophysical behavior of N-unsubstituted ßCs, this work constitutes the first full and unambiguous characterization of anionic species of N-unsubstituted ßCs (norharmane, harmane and harmine), present in aqueous solution under highly alkaline conditions (pH > 13.0). Acid dissociation constants (Ka ), thermal stabilities, room temperature UV-visible absorption and fluorescence emission and excitation spectra, fluorescence quantum yields (ФF ) and fluorescence lifetimes (τF ), as well as quantum yields of singlet oxygen production (Ð¤Δ ) have been measured for all the studied compounds. Furthermore, for the first time to our knowledge, chemometric techniques (MCR-ALS and PARAFAC) were applied on these systems, providing relevant information about the equilibria and species involved. The impact of all the foregoing observations on the biological role, as well as the potential biotechnological applications of these compounds, is discussed.

7.
Sci Total Environ ; 618: 518-530, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29145102

ABSTRACT

The impact of remediation combining chemical oxidation followed by biological treatment on soil matrix and microbial community was studied, of a chronically hydrocarbon contaminated soil sourced from a landfarming treatment. Oxidation by ammonium persulfate produced a significant elimination of polycyclic aromatic hydrocarbons (PAHs) and an increase in PAH bioavailability. Organic-matter oxidation mobilized nutrients from the soil matrix. The bacterial populations were affected negatively, with a marked diminution in the diversity indices. In this combined treatment with oxidation and bioremediation working in tandem, the aliphatic-hydrocarbon fractions were largely eliminated along with additional PAHs. The chemical and spectroscopic analyses indicated a change in soil nutrients. In spite of the high residual-sulfate concentration, a rapid recovery of the cultivable bacterial population and the establishment of a diverse and equitable microbial community were obtained. Pyrosequencing analysis demonstrated a marked succession throughout this twofold intervention in accordance with the chemical and biologic shifts observed. These remediation steps produced different effects on the soil physiology. Spectroscopic analysis became a useful tool for following and comparing those treatments, which involved acute changes in a matrix of such chronically hydrocarbon-contaminated soil. The combined treatment increased the elimination efficiency of both the aliphatic hydrocarbons and the PAHs at the expense of the mobilized organic matter, thus sustaining the recovery of the resilient populations throughout the treatment. The high-throughput-DNA-sequencing techniques enabled the identification of the predominant populations that were associated with the changes observed during the treatments.


Subject(s)
Biodegradation, Environmental , Polycyclic Aromatic Hydrocarbons/isolation & purification , Soil Microbiology , Soil Pollutants/isolation & purification , Bacteria/metabolism , Oxidation-Reduction , Soil
8.
Photochem Photobiol Sci ; 12(11): 1968-75, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24057173

ABSTRACT

The photophysical behavior of five acridine(1,8)dione dyes of biological interest was studied by absorption and fluorescence spectroscopy, photoacoustics and time resolved phosphorescence techniques. The results obtained in ethanol and acetonitrile solutions show that the main spectroscopic and photophysical parameters of these compounds depend strongly on both the solvent and oxygen concentrations. Oxygen completely quenched the triplet state of all dyes. In nitrogen-saturated solutions, quantum efficiencies of triplet formation in ethanol were lower than those in acetonitrile.

9.
J Phys Chem A ; 117(21): 4428-35, 2013 May 30.
Article in English | MEDLINE | ID: mdl-23642169

ABSTRACT

Quantum yields and efficiencies of (1)O2 ((1)Δg) production along with photophysical properties for a number of Re(I) complexes in acetonitrile solutions are reported. Two different classes of Re(I) complexes, L(S)-CO2-Re(CO)3(bpy) (L(S) = 2-pyrazine, 2-naphthalene, 9-anthracene, 1-pyrene, 2-anthraquinone) and XRe(CO)3L (X = CF3SO3, py; L = bpy, phen), were probed as photosensitizers for (1)O2 ((1)Δg) production in air-saturated acetonitrile solutions. Depending on the nature of the Re(I) complex, the excited state responsible for the generation of (1)O2 ((1)Δg) is either a metal-to-ligand charge transfer ((3)MLCT) or a ligand centered ((3)LC) state. With L(S)-CO2-Re(CO)3(bpy) complexes, (1)O2 ((1)Δg) is produced by oxygen quenching of (3)LC states of anthracene and pyrene with high quantum yields (ΦΔ between 0.8 and 1.0), while the complexes bearing the ligands L(S) = 2-anthraquinone, 2-pyrazine, and 2-naphthalene did not yield (1)O2. XRe(CO)3L complexes generate (1)O2 ((1)Δg) mainly by oxygen quenching of their (3)MLCT luminescence with an efficiency of (1)O2 ((1)Δg) formation close to unity. Bimolecular rate constants for the quenching of the XRe(CO)3L complexes' emission by molecular oxygen range between 1 × 10(9) and 2 × 10(9) M(-1) s(-1), and they are all ≤ (1/9)kd, in good agreement with the predominance of the singlet channel in the mechanism of (1)O2 ((1)Δg) generation using these Re(I) complexes as photosensitizers. All the experimental singlet oxygen efficiencies are consistent with calorimetric and luminescence data for the studied complexes. With L(S)-CO2-Re(CO)3(bpy) complexes, calorimetric experiments were utilized in the calculation of the quantum yields of triplet formation; namely φT = 0.76 and 0.83 for the triplet states of anthracene and pyrene, respectively.


Subject(s)
Lasers , Luminescent Measurements , Organometallic Compounds/chemistry , Photoacoustic Techniques , Rhenium/chemistry , Singlet Oxygen/chemistry , Photochemical Processes
10.
Photochem Photobiol ; 85(3): 686-92, 2009.
Article in English | MEDLINE | ID: mdl-19067950

ABSTRACT

The photodegradation of the herbicide clomazone in the presence of S(2)O(8) (2-) or of humic substances of different origin was investigated. A value of (9.4 +/- 0.4) x 10(8) m(-1) s(-1) was measured for the bimolecular rate constant for the reaction of sulfate radicals with clomazone in flash-photolysis experiments. Steady state photolysis of peroxydisulfate, leading to the formation of the sulfate radicals, in the presence of clomazone was shown to be an efficient photodegradation method of the herbicide. This is a relevant result regarding the in situ chemical oxidation procedures involving peroxydisulfate as the oxidant. The main reaction products are 2-chlorobenzylalcohol and 2-chlorobenzaldehyde. The degradation kinetics of clomazone was also studied under steady state conditions induced by photolysis of Aldrich humic acid or a vermicompost extract (VCE). The results indicate that singlet oxygen is the main species responsible for clomazone degradation. The quantum yield of O(2)(a(1)Delta(g)) generation (lambda = 400 nm) for the VCE in D(2)O, Phi(Delta) = (1.3 +/- 0.1) x 10(-3), was determined by measuring the O(2)(a(1)Delta(g)) phosphorescence at 1270 nm. The value of the overall quenching constant of O(2)(a(1)Delta(g)) by clomazone was found to be (5.7 +/- 0.3) x 10(7) m(-1) s(-1) in D(2)O. The bimolecular rate constant for the reaction of clomazone with singlet oxygen was k(r) = (5.4 +/- 0.1) x 10(7) m(-1) s(-1), which means that the quenching process is mainly reactive.


Subject(s)
Herbicides/chemistry , Isoxazoles/chemistry , Models, Chemical , Oxazolidinones/chemistry , Photochemistry , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...