Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-447687

ABSTRACT

COVID-19 pandemic initiated a worldwide race toward the development of treatments and vaccines. Small animal models were the Syrian golden hamster and the K18-hACE2 mice infected with SARS-CoV-2 to display a disease state with some aspects of the human COVID-19. Group activity of animals in their home cage continuously monitored by the HCMS100 was used as a sensitive marker of disease, successfully detecting morbidity symptoms of SARS-CoV-2 infection in hamsters and in K18-hACE2 mice. COVID-19 convalescent hamsters re-challenged with SARS-CoV-2, exhibited minor reduction in group activity compared to naive hamsters. To evaluate rVSV-{Delta}G-spike vaccination efficacy against SARS-CoV-2, we used the HCMS100 to monitor group activity of hamsters in their home cage. Single-dose rVSV-{Delta}G-spike vaccination of immunized group showed a faster recovery compared to the non-immunized infected hamsters, substantiating the efficacy of rVSV-{Delta}G-spike vaccine. HCMS100 offers non-intrusive, hands-free monitoring of a number of home cages of hamsters or mice modeling COVID-19.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-443978

ABSTRACT

The use of passively-administered neutralizing antibodies is a promising approach for the prevention and treatment of SARS-CoV-2 infection. Antibody-mediated protection may involve immune system recruitment through Fc-dependent activation of effector cells and the complement system. However, the role of Fc-mediated functions in the efficacious in vivo neutralization of SARS-CoV-2 is not yet clear. Delineating the role this process plays in antibody-mediated protection will have a great impact on the design of such therapeutics. Here, the Fc of two highly potent SARS-CoV-2 neutralizing human monoclonal antibodies, targeting distinct domains of the spike, was engineered to abrogate their Fc-dependent functions. The protective activity of these antibodies was tested against lethal SARS-CoV-2 infections in K18-hACE2 transgenic mice, both before or two days post-exposure in comparison to their original, Fc-active antibodies. Antibody treatment with both Fc-variants similarly rescued the mice from death, reduced viral load and prevented signs of morbidity. In addition, surviving animals developed a significant endogenous immune response towards the virus. Taken together, this work provides important insight regarding the contribution of Fc-effector functions in antibody-mediated protection, which should aid in future design of effective antibody-based therapies.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-438035

ABSTRACT

A wide range of SARS-CoV-2 neutralizing monoclonal antibodies (mAbs) were reported to date, most of which target the spike glycoprotein and in particular its receptor binding domain (RBD) and N-terminal domain (NTD) of the S1 subunit. The therapeutic implementation of these antibodies has been recently challenged by emerging SARS-CoV-2 variants that harbor extensively mutated spike versions. Consequently, the re-assessment of mAbs, previously reported to neutralize the original early-version of the virus, is of high priority. Four previously selected mAbs targeting non-overlapping epitopes, were evaluated for their binding potency to RBD versions harboring individual mutations at spike positions 417, 439, 453, 477, 484 and 501. Mutations at these positions represent the prevailing worldwide distributed modifications of the RBD, previously reported to mediate escape from antibody neutralization. Additionally, the in vitro neutralization potencies of the four RBD-specific mAbs, as well as two NTD-specific mAbs, were evaluated against two frequent SARS-CoV-2 variants of concern (VOCs): (i) the B.1.1.7 variant, emerged in the UK and (ii) the B.1.351 variant, emerged in South Africa. Variant B.1.351 was previously suggested to escape many therapeutic mAbs, including those authorized for clinical use. The possible impact of RBD mutations on recognition by mAbs is addressed by comparative structural modelling. Finally, we demonstrate the therapeutic potential of three selected mAbs by treatment of K18-hACE2 transgenic mice two days post infection with each of the virus strains. Our results clearly indicate that despite the accumulation of spike mutations, some neutralizing mAbs preserve their potency against SARS-CoV-2. In particular, the highly potent MD65 and BL6 mAbs are shown to retain their ability to bind the prevalent novel viral mutations and to effectively protect against B.1.1.7 and B.1.351 variants of high clinical concern.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-436639

ABSTRACT

The current global COVID-19 pandemic led to an unprecedented effort to develop effective vaccines against SARS-CoV-2. mRNA vaccines were developed very rapidly during the last year, and became the leading immunization platform against the virus, with highly promising phase-3 results and remarkable efficacy data. Since most animal models are not susceptible to SARS CoV-2 infection, pre-clinical studies are often limited to infection-prone animals such as hamsters and non-human primates. In these animal models, SARS-CoV-2 infection results in viral replication and a mild disease disease. Therefore, the protective efficacy of the vaccine in these animals is commonly evaluated by its ability to elicit immunologic responses, diminish viral replication and prevent weight loss. Our lab recently reported the design of a SARS-CoV-2 human Fc-conjugated receptor-binding domain (RBD-hFc) mRNA vaccine delivered via lipid nanoparticles (LNPs). These experiments demonstrated the development of a robust and specific immunologic response in RBD-hFc mRNA-vaccinated BALB/c mice. In the current study, we evaluated the protective effect of this RBD-hFc mRNA vaccine by employing the K18-hACE2 mouse model. We report that administration of RBD-hFc mRNA vaccine to K18-hACE2 mice led to a robust humoral response comprised of both binding and neutralizing antibodies. In accordance with the recorded immunologic immune response, 70% of vaccinated mice were protected against a lethal dose (3000 plaque forming units) of SARS-CoV-2, while all control animals succumbed to infection. To the best of our knowledge, this is the first non-replicating mRNA vaccine study reporting protection of K18-hACE2 against a lethal SARS-CoV-2 infection.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-428995

ABSTRACT

Since the onset of the current COVID-19 pandemic, high priority is given to the development of neutralizing antibodies, as a key approach for the design of therapeutic strategies to countermeasure and eradicate the disease. Previously, we reported the development of human therapeutic monoclonal antibodies (mAbs) exhibiting very high protective ability. These mAbs recognize epitopes on the spike receptor binding domain (RBD) of SARS-CoV-2 that is considered to represent the main rout of receptor engagement by the SARS-CoV-2 virus. The recent emergence of viral variants emphasizes the notion that efficient antibody treatments need to rely on mAbs against several distinct key epitopes in order to circumvent the occurrence of therapy escape-mutants. Here we report the isolation and characterization of 12 neutralizing mAbs, identified by screening a phage-display library constructed from lymphatic cells collected from severe COVID-19 patients. The antibodies target three distinct epitopes on the spike N-terminal domain (NTD) of SARS-CoV-2, one of them defining a major site of vulnerability of the virus. Extensive characterization of these mAbs suggests a neutralization mechanism which relies both on amino-acid and N-glycan recognition on the virus, and involvement of receptors other than the hACE2 on the target cell. Two of the selected mAbs, which demonstrated superior neutralization potency in vitro, were further evaluated in vivo, demonstrating their ability to fully protect K18-hACE2 transgenic mice even when administered at low doses and late after infection. The study demonstrates the high potential of the mAbs for therapy of SARS-CoV-2 infection and underlines the possible role of the NTD in mediating infection of host cells via alternative cellular portals other than the canonical ACE2 receptor.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-358614

ABSTRACT

Severe manifestations of COVID-19 are mostly restricted to people with comorbidities. Here we report that induced mild pulmonary morbidities render SARS-CoV-2-refractive CD-1 mice to be susceptible to this virus. Specifically, SARS-CoV-2 infection after application of low-doses of the acute-lung-injury stimulants bleomycin or ricin caused a severe disease in CD-1 mice, manifested by sustained body weight loss and mortality rates of >50%. Further studies revealed markedly higher levels of viral RNA in the lungs, heart and serum of low-dose-ricin pretreated, as compared to non-pretreated mice. Notably, the deleterious effects of SARS-CoV-2 infection were effectively alleviated by passive transfer of polyclonal or monoclonal antibodies generated against SARS-CoV-2 RBD. Thus, viral cell entry in the sensitized mice seems to involve viral RBD binding, albeit by a mechanism other than the canonical ACE2-mediated uptake route. In summary, we present a novel mice-based animal model for the study of comorbidity-dependent severe COVID-19.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-354811

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits high levels of mortality and morbidity and has dramatic consequences on human life, sociality and global economy. Neutralizing antibodies constitute a highly promising approach for treating and preventing infection by this novel pathogen. In the present study, we characterized and further evaluated the recently identified human monoclonal MD65 antibody for its ability to provide protection against a lethal SARS-CoV-2 infection of K18-hACE2 transgenic mice. Eighty percent of the untreated mice succumbed 6-9 days post-infection while administration of the MD65 antibody as late as 3 days after exposure, rescued all infected animals. In addition, the efficiency of the treatment is supported by prevention of morbidity and ablation of the load of infective virions in the lungs of treated animals. The data unprecedentedly demonstrate, the therapeutic value of human monoclonal antibodies as a life-saving treatment of severe COVID-19 infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...