Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-319731

ABSTRACT

SynopsisO_ST_ABSBackgroundC_ST_ABSSARS-CoV-2 is the causative agent of COVID-19 and a pathogen of immense global public health importance. Development of innovative direct-acting antiviral agents is sorely needed to address this virus. Peptide-conjugated morpholino oligomers (PPMO) are antisense agents composed of a phosphordiamidate morpholino oligomer covalently conjugated to a cell-penetrating peptide. PPMO require no delivery assistance to enter cells and are able to reduce expression of targeted RNA through sequence-specific steric blocking. Objectives and MethodsFive PPMO designed against sequences of genomic RNA in the SARS-CoV-2 5-untranslated region and a negative control PPMO of random sequence were synthesized. Each PPMO was evaluated for its effect on the viability of uninfected cells and its inhibitory effect on the replication of SARS-CoV-2 in Vero-E6 cell cultures. Cell viability was evaluated with an ATP-based method and viral growth was measured with quantitative RT-PCR and TCID50 infectivity assays. ResultsPPMO designed to base-pair with sequence in the 5-terminal region or the leader transcription regulatory sequence-region of SARS-CoV-2 genomic RNA were highly efficacious, reducing viral titers by up to 4-6 log10 in cell cultures at 48-72 hours post-infection, in a non-toxic and dose-responsive manner. ConclusionThe data indicate that PPMO have the ability to potently and specifically suppress SARS-CoV-2 growth and are promising candidates for further pre-clinical development.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-145144

ABSTRACT

We remain largely without effective prophylactic/therapeutic interventions for COVID-19. Although many human clinical trials are ongoing, there remains a deficiency of supportive preclinical drug efficacy studies. Here we assessed the prophylactic/therapeutic efficacy of hydroxychloroquine (HCQ), a drug of interest for COVID-19 management, in two animal models. When used for prophylaxis or treatment neither the standard human malaria dose (6.5 mg/kg) nor a high dose (50 mg/kg) of HCQ had any beneficial effect on clinical disease or SARS-CoV-2 kinetics (replication/shedding) in the Syrian hamster disease model. Similarly, HCQ prophylaxis/treatment (6.5 mg/kg) did not significantly benefit clinical outcome nor reduce SARS-CoV-2 replication/shedding in the upper and lower respiratory tract in the rhesus macaque disease model. In conclusion, our preclinical animal studies do not support the use of HCQ in prophylaxis/treatment of COVID-19.One Sentence Summary Hydroxychloroquine prophylaxis/treatment showed no beneficial effect in SARS-CoV-2 hamster and macaque disease models.Competing Interest StatementThe authors have declared no competing interest.View Full Text

SELECTION OF CITATIONS
SEARCH DETAIL
...