Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21267368

ABSTRACT

BACKGROUNDThe aim of this multinational study was to assess the development of adverse mental health symptoms among individuals diagnosed with COVID-19 in the general population by acute infection severity up to 16 months after diagnosis. METHODSParticipants consisted of 247 249 individuals from seven cohorts across six countries (Denmark, Estonia, Iceland, Norway, Scotland, and Sweden) recruited from April 2020 through August 2021. We used multivariable Poisson regression to contrast symptom-prevalence of depression, anxiety, COVID-19 related distress, and poor sleep quality among individuals with and without a diagnosis of COVID-19 at entry to respective cohorts by time (0-16 months) from diagnosis. We also applied generalised estimating equations (GEE) analysis to test differences in repeated measures of mental health symptoms before and after COVID-19 diagnosis among individuals ever diagnosed with COVID-19 over time. FINDINGSA total of 9979 individuals (4%) were diagnosed with COVID-19 during the study period and presented overall with a higher symptom burden of depression (prevalence ratio [PR] 1{middle dot}18, 95% confidence interval [95% CI] 1{middle dot}03-1{middle dot}36) and poorer sleep quality (1{middle dot}13, 1{middle dot}03-1{middle dot}24) but not with higher levels of symptoms of anxiety or COVID-19 related distress compared with individuals without a COVID-19 diagnosis. While the prevalence of depression and COVID-19 related distress attenuated with time, the trajectories varied significantly by COVID-19 acute infection severity. Individuals diagnosed with COVID-19 but never bedridden due to their illness were consistently at lower risks of depression and anxiety (PR 0{middle dot}83, 95% CI 0{middle dot}75-0{middle dot}91 and 0{middle dot}77, 0{middle dot}63-0{middle dot}94, respectively), while patients bedridden for more than 7 days were persistently at higher risks of symptoms of depression and anxiety (PR 1{middle dot}61, 95% CI 1{middle dot}27-2{middle dot}05 and 1{middle dot}43, 1{middle dot}26-1{middle dot}63, respectively) throughout the 16-month study period. CONCLUSIONAcute infection severity is a key determinant of long-term mental morbidity among COVID-19 patients.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21259374

ABSTRACT

Global healthcare systems are challenged by the COVID-19 pandemic. There is a need to optimize allocation of treatment and resources in intensive care, as clinically established risk assessments such as SOFA and APACHE II scores show only limited performance for predicting the survival of severely ill COVID-19 patients. Comprehensively capturing the host physiology, we speculated that proteomics in combination with new data-driven analysis strategies could produce a new generation of prognostic discriminators. We studied two independent cohorts of patients with severe COVID-19 who required intensive care and invasive mechanical ventilation. SOFA score, Charlson comorbidity index and APACHE II score were poor predictors of survival. Plasma proteomics instead identified 14 proteins that showed concentration trajectories different between survivors and non-survivors. A proteomic predictor trained on single samples obtained at the first time point at maximum treatment level (i.e. WHO grade 7) and weeks before the outcome, achieved accurate classification of survivors in an exploratory (AUROC 0.81) as well as in the independent validation cohort (AUROC of 1.0). The majority of proteins with high relevance in the prediction model belong to the coagulation system and complement cascade. Our study demonstrates that predictors derived from plasma protein levels have the potential to substantially outperform current prognostic markers in intensive care. Trial registrationGerman Clinical Trials Register DRKS00021688

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21259277

ABSTRACT

BackgroundThe impact of long COVID is considerable, but risk factors are poorly characterised. We analysed symptom duration and risk factor from 10 longitudinal study (LS) samples and electronic healthcare records (EHR). MethodsSamples: 6907 adults self-reporting COVID-19 infection from 48,901 participants in the UK LS, and 3,327 adults with COVID-19, were assigned a long COVID code from 1,199,812 individuals in primary care EHR. Outcomes for LS included symptom duration lasting 4+ weeks (long COVID) and 12+ weeks. Association with of age, sex, ethnicity, socioeconomic factors, smoking, general and mental health, overweight/obesity, diabetes, hypertension, hypercholesterolaemia, and asthma was assessed. ResultsIn LS, symptoms impacted normal functioning for 12+ weeks in 1.2% (mean age 20 years) to 4.8% (mean age 63 y) of COVID-19 cases. Between 7.8% (mean age 28 y) and 17% (mean age 58 y) reported any symptoms for 12+ weeks, and greater proportions for 4+ weeks. Age was associated with a linear increased risk in long COVID between 20 and 70 years. Being female (LS: OR=1.49; 95%CI:1.24-1.79; EHR: OR=1.51 [1.41-1.61]), having poor pre-pandemic mental health (LS: OR=1.46 [1.17-1.83]; EHR: OR=1.57 [1.47-1.68]) and poor general health (LS: OR=1.62 [1.25-2.09]; EHR: OR=1.26; [1.18-1.35]) were associated with higher risk of long COVID. Individuals with asthma (LS: OR=1.32 [1.07-1.62]; EHR: OR=1.56 [1.46-1.67]), and overweight or obesity (LS: OR=1.25 [1.01-1.55]; EHR: OR=1.31 [1.21-1.42]) also had higher risk. Non-white ethnic minority groups had lower risk (LS: OR=0.32 [0.22-0.47]), a finding consistent in EHR. . Few participants had been hospitalised (0.8-5.2%). ConclusionLong COVID is associated with sociodemographic and pre-existing health factors. Further investigations into causality should inform strategies to address long COVID in the population.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21254765

ABSTRACT

BackgroundThe COVID-19 pandemic and associated virus suppression measures have disrupted lives and livelihoods and people already experiencing mental ill-health may have been especially vulnerable. AimTo quantify mental health inequalities in disruptions to healthcare, economic activity and housing. Method59,482 participants in 12 UK longitudinal adult population studies with data collected prior to and during the COVID-19 pandemic. Within each study we estimated the association between psychological distress assessed pre-pandemic and disruptions since the start of the pandemic to three domains: healthcare (medication access, procedures, or appointments); economic activity (employment, income, or working hours); and housing (change of address or household composition). Meta-analyses were used to pool estimates across studies. ResultsAcross the analysed datasets, one to two-thirds of participants experienced at least one disruption, with 2.3-33.2% experiencing disruptions in two or more domains. One standard deviation higher pre-pandemic psychological distress was associated with: (i) increased odds of any healthcare disruptions (OR=1.30; [95% CI:1.20-1.40]) with fully adjusted ORs ranging from 1.24 [1.09-1.41] for disruption to procedures and 1.33 [1.20- 1.49] for disruptions to prescriptions or medication access; (ii) loss of employment (OR=1.13 [1.06-1.21]) and income (OR=1.12 [1.06 -1.19]) and reductions in working hours/furlough (OR=1.05 [1.00-1.09]); (iii) no associations with housing disruptions (OR=1.00 [0.97-1.03]); and (iv) increased likelihood of experiencing a disruption in at least two domains (OR=1.25 [1.18-1.32]) or in one domain (OR=1.11 [1.07-1.16]) relative to no disruption. ConclusionPeople experiencing psychological distress pre-pandemic have been more likely to experience healthcare and economic disruptions, and clusters of disruptions across multiple domains during the pandemic. Failing to address these disruptions risks further widening the existing inequalities in mental health.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20228015

ABSTRACT

COVID-19 is highly variable in its clinical presentation, ranging from asymptomatic infection to severe organ damage and death. There is an urgent need for predictive markers that can guide clinical decision-making, inform about the effect of experimental therapies, and point to novel therapeutic targets. Here, we characterize the time-dependent progression of COVID-19 through different stages of the disease, by measuring 86 accredited diagnostic parameters and plasma proteomes at 687 sampling points, in a cohort of 139 patients during hospitalization. We report that the time-resolved patient molecular phenotypes reflect an initial spike in the systemic inflammatory response, which is gradually alleviated and followed by a protein signature indicative of tissue repair, metabolic reconstitution and immunomodulation. Further, we show that the early host response is predictive for the disease trajectory and gives rise to proteomic and diagnostic marker signatures that classify the need for supplemental oxygen therapy and mechanical ventilation, and that predict the time to recovery of mildly ill patients. In severely ill patients, the molecular phenotype of the early host response predicts survival, in two independent cohorts and weeks before outcome. We also identify age-specific molecular response to COVID-19, which involves increased inflammation and lipoprotein dysregulation in older patients. Our study provides a deep and time resolved molecular characterization of COVID-19 disease progression, and reports biomarkers for risk-adapted treatment strategies and molecular disease monitoring. Our study demonstrates accurate prognosis of COVID-19 outcome from proteomic signatures recorded weeks earlier.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-20200048

ABSTRACT

The subset of patients who develop critical illness in Covid-19 have extensive inflammation affecting the lungs1 and are strikingly different from other patients: immunosuppressive therapy benefits critically-ill patients, but may harm some non-critical cases.2 Since susceptibility to life-threatening infections and immune-mediated diseases are both strongly heritable traits, we reasoned that host genetic variation may identify mechanistic targets for therapeutic development in Covid-19.3 GenOMICC (Genetics Of Mortality In Critical Care, genomicc.org) is a global collaborative study to understand the genetic basis of critical illness. Here we report the results of a genome-wide association study (GWAS) in 2244 critically-ill Covid-19 patients from 208 UK intensive care units (ICUs), representing >95% of all ICU beds. Ancestry-matched controls were drawn from the UK Biobank population study and results were confirmed in GWAS comparisons with two other population control groups: the 100,000 genomes project and Generation Scotland. We identify and replicate three novel genome-wide significant associations, at chr19p13.3 (rs2109069, p = 3.98 x 10-12), within the gene encoding dipeptidyl peptidase 9 (DPP9), at chr12q24.13 (rs10735079, p =1.65 x 10-8) in a gene cluster encoding antiviral restriction enzyme activators (OAS1, OAS2, OAS3), and at chr21q22.1 (rs2236757, p = 4.99 x 10-8) in the interferon receptor gene IFNAR2. Consistent with our focus on extreme disease in younger patients with less comorbidity, we detect a stronger signal at the known 3p21.31 locus than previous studies (rs73064425, p = 4.77 x 10-30). We identify potential targets for repurposing of licensed medications. Using Mendelian randomisation we found evidence in support of a causal link from low expression of IFNAR2, and high expression of TYK2, to life-threatening disease. Transcriptome-wide association in lung tissue revealed that high expression of the monocyte/macrophage chemotactic receptor CCR2 is associated with severe Covid-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms, and mediators of inflammatory organ damage in Covid-19. Both mechanisms may be amenable to targeted treatment with existing drugs. Large-scale randomised clinical trials will be essential before any change to clinical practice.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-20081810

ABSTRACT

The COVID-19 pandemic is an unprecedented global challenge. Highly variable in its presentation, spread and clinical outcome, novel point-of-care diagnostic classifiers are urgently required. Here, we describe a set of COVID-19 clinical classifiers discovered using a newly designed low-cost high-throughput mass spectrometry-based platform. Introducing a new sample preparation pipeline coupled with short-gradient high-flow liquid chromatography and mass spectrometry, our methodology facilitates clinical implementation and increases sample throughput and quantification precision. Providing a rapid assessment of serum or plasma samples at scale, we report 27 biomarkers that distinguish mild and severe forms of COVID-19, of which some may have potential as therapeutic targets. These proteins highlight the role of complement factors, the coagulation system, inflammation modulators as well as pro-inflammatory signalling upstream and downstream of Interleukin 6. Application of novel methodologies hence transforms proteomics from a research tool into a rapid-response, clinically actionable technology adaptable to infectious outbreaks. Highlights- A completely redesigned clinical proteomics platform increases throughput and precision while reducing costs. - 27 biomarkers are differentially expressed between WHO severity grades for COVID-19. - The study highlights potential therapeutic targets that include complement factors, the coagulation system, inflammation modulators as well as pro-inflammatory signalling both upstream and downstream of interleukin 6.

SELECTION OF CITATIONS
SEARCH DETAIL
...