Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-449811

ABSTRACT

The ongoing COVID-19 pandemic has highlighted the dearth of approved drugs to treat viral infections, with only [~]90 FDA approved drugs against human viral pathogens. To identify drugs that can block SARS-CoV-2 replication, extensive drug screening to repurpose approved drugs is underway. Here, we screened [~]18,000 drugs for antiviral activity using live virus infection in human respiratory cells. Dose-response studies validate 122 drugs with antiviral activity and selectivity against SARS-CoV-2. Amongst these drug candidates are 16 nucleoside analogs, the largest category of clinically used antivirals. This included the antiviral Remdesivir approved for use in COVID-19, and the nucleoside Molnupirivir, which is undergoing clinical trials. RNA viruses rely on a high supply of nucleoside triphosphates from the host to efficiently replicate, and we identified a panel of host nucleoside biosynthesis inhibitors as antiviral, and we found that combining pyrimidine biosynthesis inhibitors with antiviral nucleoside analogs synergistically inhibits SARS-CoV-2 infection in vitro and in vivo suggesting a clinical path forward.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-443693

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the third coronavirus in less than 20 years to spillover from an animal reservoir and cause severe disease in humans. High impact respiratory viruses such as pathogenic beta-coronaviruses and influenza viruses, as well as other emerging respiratory viruses, pose an ongoing global health threat to humans. There is a critical need for physiologically relevant, robust and ready to use, in vitro cellular assay platforms to rapidly model the infectivity of emerging respiratory viruses and discover and develop new antiviral treatments. Here, we validate in vitro human alveolar and tracheobronchial tissue equivalents and assess their usefulness as in vitro assay platforms in the context of live SARS-CoV-2 and influenza A virus infections. We establish the cellular complexity of two distinct tracheobronchial and alveolar epithelial air liquid interface (ALI) tissue models, describe SARS-CoV-2 and influenza virus infectivity rates and patterns in these ALI tissues, the viral-induced cytokine production as it relates to tissue-specific disease, and demonstrate the pharmacologically validity of these lung epithelium models as antiviral drug screening assay platforms.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-423537

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is a validated antiviral drug target. Several Mpro inhibitors have been reported with potent enzymatic inhibition and cellular antiviral activity, including GC376, boceprevir, calpain inhibitors II and XII, each containing a reactive warhead that covalently modifies the catalytic Cys145. In this study, we report an expedited drug discovery approach by coupling structure-based design and Ugi four-component (Ugi-4CR) reaction methodology to the design of non-covalent Mpro inhibitors. The most potent compound 23R had cellular antiviral activity similar to covalent inhibitors such as GC376. Our designs were guided by overlaying the structure of SARS-CoV Mpro + ML188 (R), a non-covalent inhibitor derived from Ug-4CR, with the X-ray crystal structures of SARS-CoV-2 Mpro + calpain inhibitor XII/GC376/UAWJ247. Binding site analysis suggests a strategy of extending the P2 and P3 substitutions in ML188 (R) to achieve optimal shape complementary with SARS-CoV-2 Mpro. Lead optimization led to the discovery of 23R, which inhibits SARS-CoV-2 Mpro and SARS-CoV-2 viral replication with an IC50 of 0.31 M and EC50 of 1.27 M, respectively. The binding and specificity of 23R to SARS-CoV-2 Mpro were confirmed in a thermal shift assay and native mass spectrometry assay. The co-crystal structure of SARS-CoV-2 Mpro with 23R revealed the P2 biphenyl fits snuggly into the S2 pocket and the benzyl group in the -methylbenzyl faces towards the core of the enzyme, occupying a previously unexplored binding site located in between the S2 and S4 pockets. Overall, this study revealed the most potent non-covalent SARS-CoV-2 Mpro inhibitors reported to date and a novel binding pocket that can be explored for Mpro inhibitor design.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-161042

ABSTRACT

There are an urgent need for antivirals to treat the newly emerged SARS-CoV-2. To identify new candidates we screened a repurposing library of ~3,000 drugs. Screening in Vero cells found few antivirals, while screening in human Huh7.5 cells validated 23 diverse antiviral drugs. Extending our studies to lung epithelial cells, we found that there are major differences in drug sensitivity and entry pathways used by SARS-CoV-2 in these cells. Entry in lung epithelial Calu-3 cells is pH-independent and requires TMPRSS2, while entry in Vero and Huh7.5 cells requires low pH and triggering by acid-dependent endosomal proteases. Moreover, we found 9 drugs are antiviral in lung cells, 7 of which have been tested in humans, and 3 are FDA approved including Cyclosporine which we found is targeting Cyclophilin rather than Calcineurin for its antiviral activity. These antivirals reveal essential host targets and have the potential for rapid clinical implementation.

SELECTION OF CITATIONS
SEARCH DETAIL
...