Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 216: 118319, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35339051

ABSTRACT

While flow anodic oxidation systems can efficiently generate hydroxyl radicals (·OH) and significantly enhance direct electron transfer (DET) processes that result in the oxidation of target contaminants via the charge percolating network of flow anode particles, challenges remain in constructing a flow anodic oxidation system that can be operated continuously with stable performance. Here we incorporate an ultrafiltration (UF) membrane module into the flow anodic oxidation system and achieve the continuous defluorination of perfluorooctanoic acid (PFOA) for 12 days with high efficiency (94.1%) and reasonable energy consumption (38.1 Wh mg-1) compared to other advanced oxidation processes by using a mixture of conducting TixO2x-1 and Pd/CNT particles as the flow anode. The results indicate that DET, ·OH mediated oxidation and adsorption processes play critical roles in the degradation of PFOA during the flow anodic oxidation processes. The synergistic effect of the TixO2x-1 and Pd/CNT particles enhances the defluorination efficiency by 3.2 times at 4.5 V vs Ag/AgCl compared to the control experiment (no flow anode particles present) and promotes the release of F- into solution while other intermediate products remain adsorbed to the surface of the Pd/CNT particles. Although the Pd/CNT particles were oxidized after the long-term operation, no obvious Pd ion leakage into solution was observed. Results of this study support the feasibility of continuous operation of a flow anode/UF system with stable performance and pave the way for the translation of this advanced oxidation technology to practical application.


Subject(s)
Fluorocarbons , Ultrafiltration , Caprylates , Electrodes , Oxidation-Reduction
2.
Environ Sci Technol ; 53(6): 2937-2947, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30576114

ABSTRACT

Advanced oxidation processes via semiconductor photocatalysis for water treatment have been the subject of extensive research over the past three decades, producing many scientific reports focused on elucidating mechanisms and enhancing kinetics for the treatment of contaminants in water. Many of these reports imply that the ultimate goal of the research is to apply photocatalysis in municipal water treatment operations. However, this ignores immense technology transfer problems, perpetuating a widening gap between academic advocation and industrial application. In this Feature, we undertake a critical examination of the trajectory of photocatalytic water treatment research, assessing the viability of proposed applications and identifying those with the most promising future. Several strategies are proposed for scientists and engineers who aim to support research efforts to bring industrially relevant photocatalytic water treatment processes to fruition. Although the reassessed potential may not live up to initial academic hype, an unfavorable assessment in some areas does not preclude the transfer of photocatalysis for water treatment to other niche applications as the technology retains substantive and unique benefits.


Subject(s)
Water Pollutants, Chemical , Water Purification , Catalysis , Oxidation-Reduction , Water
3.
Water Res ; 124: 341-352, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28780358

ABSTRACT

Iron salts are routinely dosed in wastewater treatment as a means of achieving effluent phosphorous concentration goals. The iron oxides that result from addition of iron salts partake in various reactions, including reductive dissolution and phosphate adsorption. The reactivity of these oxides is controlled by the conditions of formation and the processes, such as aggregation, that lead to a reduction in accessible surface sites following formation. The presence of organic compounds is expected to significantly impact these processes in a number of ways. In this study, amorphous ferric oxide (AFO) reactivity and aging was investigated following the addition of ferric iron (Fe(III)) to three solution systems: two synthetic buffered systems, either containing no organic or containing alginate, and a supernatant system containing soluble microbial products (SMPs) sourced from a membrane bioreactor (MBR). Reactivity of the Fe(III) phases in these systems at various times (1-60 min) following Fe(III) addition was quantified by determining the rate constants for ascorbate-mediated reductive dissolution over short (5 min) and long (60 min) dissolution periods and for a range (0.5-10 mM) of ascorbate concentrations. AFO particle size was monitored using dynamic light scattering during the aging and dissolution periods. In the presence of alginate, AFO particles appeared to be stabilized against aggregation. However, aging in the alginate system was remarkably similar to the inorganic system where aging is associated with aggregation. An aging mechanism involving restructuring within the alginate-AFO assemblage was proposed. In the presence of SMPs, a greater diversity of Fe(III) phases was evident with both a small labile pool of organically complexed Fe(III) and a polydisperse population of stabilized AFO particles present. The prevalence of low molecular weight organic molecules facilitated stabilization of the Fe(III) oxyhydroxides formed but subsequent aging observed in the alginate system did not occur. The reactivity of the Fe(III) in the supernatant system was maintained with little loss in reactivity over at least 24 h. The capacity of SMPs to maintain high reactivity of AFO has important implications in a reactor where Fe(III) phases encounter alternating redox conditions due to sludge recirculation, creating a cycle of reductive dissolution, oxidation and precipitation.


Subject(s)
Bioreactors , Ferric Compounds/chemistry , Iron , Membranes, Artificial , Oxidation-Reduction , Sewage , Water Purification
4.
J Colloid Interface Sci ; 358(1): 290-300, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21419415

ABSTRACT

Here we describe the nature and implications of the "concentration polarization" (CP) layer that is formed during ultrafiltration of colloidal particles using a new approach in which the solid pressure, which arises from inter-particle interactions, and the inherent osmotic pressure are separately considered. The approach makes use of the particle transport mass balance between the convective and diffusive fluxes. The particle convection rate is hindered when inter-particle interactions take effect by reducing the particle velocities while the particle diffusion is solely controlled by the Brownian motion. An increase in solid pressure accounts for the reduction of the water potential caused by the relative motions of the particles and the surrounding water. A cell model is adopted to relate the local solid pressure with the local solid fraction and inter-particle interactions. The inter-particle interactions critically determine the form of particle accumulation (i.e. CP or gel/cake) on the membrane. The Shirato-Darcy equation is employed to relate the rate of increase in solid pressure, the relative liquid velocity and the solid fraction. Numerical integration approaches are employed to quantify the properties of the CP layer during both the development as well as the steady state phases (with steady state normally being achieved in a few minutes). The solid fractions are always no higher than those obtained when the inter-particle interactions are not considered. The decrease of the water potential caused by CP formation leads to the increase of both the solid pressure and the osmotic pressure. The dependence of the solid pressure on the solid fraction is usually stronger than that of the osmotic pressure. It is thus apparent that the solid pressure would be expected to dominate water potential reduction for solid fractions above a certain value though the solid pressure will be negligible when the solid fraction is relatively low.


Subject(s)
Colloids/chemistry , Ultrafiltration , Models, Chemical , Motion , Osmotic Pressure , Particle Size , Pressure
5.
Sci Total Environ ; 393(1): 11-26, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18237765

ABSTRACT

Recent regulation mandates that ships conduct mid-ocean ballast water exchange (BWE) prior to discharging foreign ballast in U.S. territorial waters. We investigated the utility of dissolved concentration measurements for 6 elements (Ba, P, Mn, U, V and Mo) in the ballast tanks of ships operating in the North Pacific and Atlantic oceans as tracers of mid-ocean BWE. Relatively conservative elements Mo, U and V provided little additional information beyond that obtained from salinity, whereas nonconservative Ba, P and Mn offered greater resolution. The utility of Ba, P and Mn was further examined in the context of three criteria: (1) stability, or whether tracers maintain stable concentrations in ballast tanks over time; (2) fidelity, or the degree to which tracer concentrations in ballast tanks faithfully reflect concentrations at their ocean source; and (3) predictability, or the degree to which ballast tanks have a predictable and restricted range of tracer concentrations following BWE. We found that in water held in ballast tanks over time, average stability increased for Mn21%>3%) and fidelity increased in the same direction. While Ba and P usually increased discrimination at high salinities, Mn was typically the most sensitive indicator of BWE and the presence of residual port water in partially exchanged tanks. Ba, P and Mn in tanks exchanged in the Atlantic exhibited different concentration ranges compared to tanks exchanged in the Pacific, suggesting that if trace elements are to be used to verify BWE, criteria for discriminating between exchanged and unexchanged ballast tanks may need to be basin-specific.


Subject(s)
Environmental Monitoring/methods , Metals/analysis , Phosphorus/analysis , Ships , Water Pollutants, Chemical/analysis , Atlantic Ocean , Pacific Ocean , Seawater/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...