Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
J Proteome Res ; 23(5): 1583-1592, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38651221

ABSTRACT

MD2 pineapple (Ananas comosus) is the second most important tropical crop that preserves crassulacean acid metabolism (CAM), which has high water-use efficiency and is fast becoming the most consumed fresh fruit worldwide. Despite the significance of environmental efficiency and popularity, until very recently, its genome sequence has not been determined and a high-quality annotated proteome has not been available. Here, we have undertaken a pilot proteogenomic study, analyzing the proteome of MD2 pineapple leaves using liquid chromatography-mass spectrometry (LC-MS/MS), which validates 1781 predicted proteins in the annotated F153 (V3) genome. In addition, a further 603 peptide identifications are found that map exclusively to an independent MD2 transcriptome-derived database but are not found in the standard F153 (V3) annotated proteome. Peptide identifications derived from these MD2 transcripts are also cross-referenced to a more recent and complete MD2 genome annotation, resulting in 402 nonoverlapping peptides, which in turn support 30 high-quality gene candidates novel to both pineapple genomes. Many of the validated F153 (V3) genes are also supported by an independent proteomics data set collected for an ornamental pineapple variety. The contigs and peptides have been mapped to the current F153 genome build and are available as bed files to display a custom gene track on the Ensembl Plants region viewer. These analyses add to the knowledge of experimentally validated pineapple genes and demonstrate the utility of transcript-derived proteomics to discover both novel genes and genetic structure in a plant genome, adding value to its annotation.


Subject(s)
Ananas , Genome, Plant , Plant Proteins , Proteogenomics , Tandem Mass Spectrometry , Ananas/genetics , Ananas/chemistry , Proteogenomics/methods , Plant Proteins/genetics , Plant Proteins/metabolism , Chromatography, Liquid , Proteome/genetics , Proteome/analysis , Molecular Sequence Annotation , Plant Leaves/genetics , Plant Leaves/chemistry , Peptides/genetics , Peptides/analysis , Peptides/chemistry
2.
Sci Rep ; 13(1): 16277, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770551

ABSTRACT

Natural geochemical markers in the otolith of yellowfin tuna (Thunnus albacares) were used to establish nursery-specific signatures for investigating the origin of fish captured in the western Atlantic Ocean (WAO). Two classes of chemical markers (trace elements, stable isotopes) were used to first establish nursery-specific signatures of age-0 yellowfin tuna from four primary production zones in the Atlantic Ocean: Gulf of Mexico, Caribbean Sea, Cape Verde, and Gulf of Guinea. Next, mixture and individual assignment methods were applied to predict the origin of sub-adult and adult yellowfin tuna from two regions in the WAO (Gulf of Mexico, Mid Atlantic Bight) by relating otolith core signatures (corresponding to age-0 period) to baseline signatures of age-0 fish from each nursery. Significant numbers of migrants from Caribbean Sea and eastern Atlantic Ocean (EAO) production zones (Gulf of Guinea, Cape Verde) were detected in the WAO, suggesting that fisheries in this region were subsidized by outside spawning/nursery areas. Contributions from local production (Gulf of Mexico) were also evident in samples from both WAO fisheries, but highly variable from year to year. High levels of mixing by yellowfin tuna from the different production zones and pronounced interannual trends in nursery-specific contribution rates in the WAO emphasize the complex and dynamic nature of this species' stock structure and population connectivity. Given that geographic shifts in distribution across national or political boundaries leads to governance and management challenges, this study highlights the need for temporally resolved estimates of nursery origin to refine assessment models and promote the sustainable harvest of this species.


Subject(s)
Transients and Migrants , Tuna , Animals , Humans , Atlantic Ocean , Caribbean Region , Gulf of Mexico
3.
R Soc Open Sci ; 8(9): 210345, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34540247

ABSTRACT

Stable isotope compositions of carbon and nitrogen (expressed as δ 13C and δ 15N) from the European common cuttlefish (Sepia officinalis) were measured in order to evaluate the utility of using these natural tracers throughout the Northeast Atlantic Ocean and Mediterranean Sea (NEAO-MS). Mantle tissue was obtained from S. officinalis collected from 11 sampling locations spanning a wide geographical coverage in the NEAO-MS. Significant differences of both δ 13C and δ 15N values were found among S. officinalis samples relative to sampling location. δ 13C values did not show any discernable spatial trends; however, a distinct pattern of lower δ 15N values in the Mediterranean Sea relative to the NEAO existed. Mean δ 15N values of S. officinalis in the Mediterranean Sea averaged 2.5‰ lower than conspecifics collected in the NEAO and showed a decreasing eastward trend within the Mediterranean Sea with the lowest values in the most eastern sampling locations. Results suggest δ 15N may serve as a useful natural tracer for studies on the population structure of S. officinalis as well as other marine organisms throughout the NEAO-MS.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21257572

ABSTRACT

Precision monitoring of antibody responses during the COVID-19 pandemic is increasingly important during large scale vaccine rollout and rise in prevalence of Severe Acute Respiratory Syndrome-related Coronavirus-2 (SARS-CoV-2) variants of concern (VOC). Equally important is defining Correlates of Protection (CoP) for SARS-CoV-2 infection and COVID-19 disease. Data from epidemiological studies and vaccine trials identified virus neutralising antibodies (Nab) and SARS-CoV-2 antigen-specific (notably RBD, and S) binding antibodies as candidate CoP. In this study, we used the World Health Organisation (WHO) international standard to benchmark neutralising antibody responses and a large panel of binding antibody assays to compare convalescent sera obtained from: a) COVID-19 patients; b) SARS-CoV-2 seropositive healthcare workers (HCW) and c) seronegative HCW. The ultimate aim of this study, was to identify biomarkers of humoral immunity that could be used as candidate CoP in internationally accepted unitage. Whenever suitable, the antibody levels of the samples studied were expressed in International Units (INU) for virus neutralisation assays or International Binding Antibody Units (BAU) for ELISA tests. In this work we used commercial and non-commercial antibody binding assays; a lateral flow test for detection of SARS-CoV-2-specific IgG / IgM; a high throughput multiplexed particle flow cytometry assay for SARS-CoV-2 Spike (S), Nucleocapsid (N) and Receptor Binding Domain (RBD) proteins); a multiplex antigen semi-automated immuno-blotting assay measuring IgM, IgA and IgG; a pseudotyped microneutralisation test (pMN) and electroporation-dependent neutralisation assay (EDNA). Our results indicate that overall, severe COVID-19 patients showed statistically significantly higher levels of SARS-CoV-2-specific neutralising antibodies (average 1029 IU/ml) than those observed in seropositive HCW with mild or asymptomatic infections (379 IU/ml) and that clinical severity scoring, based on WHO guidelines was tightly correlated with neutralisation and RBD / S binding assays. In addition, there was a positive correlation between severity, N-antibody assays and intracellular virus neutralisation.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20145318

ABSTRACT

With the first 2020 surge of the COVID-19 pandemic, many health care workers (HCW) were re-deployed to critical care environments to support intensive care teams to look after high numbers of patients with severe COVID-19. There was considerable anxiety of increased risk of COVID19 for staff working in these environments. Using a multiplex platform to assess serum IgG responses to SARS-CoV-2 N, S and RBD proteins, and detailed symptom reporting, we screened over 500 HCW (25% of the total workforce) in a quaternary level hospital to explore the relationship between workplace and evidence of exposure to SARS-CoV-2. Whilst 45% of the cohort reported symptoms that they consider may have represented COVID-19, overall seroprevalence was 14% with anosmia and fever being the most discriminating symptoms for seropositive status. There was a significant difference in seropositive status between staff working in clinical and non-clinical roles (9% patient facing critical care, 15% patient facing non-critical care, 22% nonpatient facing). In the seropositive cohort, symptom severity increased with age for men and not for women. In contrast, there was no relationship between symptom severity and age or sex in the seronegative cohort reporting possible COVID-19 symptoms. Of the 12 staff screened PCR positive (10 symptomatic), 3 showed no evidence of seroconversion in convalescence. ConclusionThe current approach to Personal Protective Equipment (PPE) appears highly effective in protecting staff from patient acquired infection in the critical care environment including protecting staff managing interhospital transfers of COVID-19 patients. The relationship between seroconversion and disease severity in different demographics warrants further investigation. Longitudinally paired virological and serological surveillance, with symptom reporting are urgently required to better understand the role of antibody in the outcome of HCW exposure during subsequent waves of COVID-19 in health care environments.

6.
Rapid Commun Mass Spectrom ; 31(24): 2073-2080, 2017 Dec 30.
Article in English | MEDLINE | ID: mdl-28940897

ABSTRACT

RATIONALE: Application of vertebral chemistry in elasmobranchs has the potential to progress our understanding of individual migration patterns and population dynamics. However, the influence of handling artifacts such as sample cleaning and storage on vertebral chemistry is unclear and requires experimental investigation. METHODS: Vertebrae centra from blacktip sharks (Carcharhinus limbatus) were cleaned with bleach (NaOCl) for 5 minutes (min), 1 hour (h) and 24 (h) in a cleaning experiment and stored frozen, in 70% ethanol, and 10% formalin treatments for 20 days in a storage experiment. Element concentrations (Li, Na, Mg, Mn, Cu, Zn, Sr, Ba, Pb) were quantified in the outer edges of vertebrae centra using laser ablation inductively coupled plasma mass spectrometry and the [element:Ca] molar ratios were compared among treatments and individual sharks. RESULTS: Bleach cleaning significantly increased [Na:Ca] and formalin storage decreased [Na:Ca] and [Mg:Ca], but ethanol storage did not affect any [element:Ca] ratios. Vertebrae edge [Sr:Ca], [Ba:Ca] and [Mn:Ca] varied among individual sharks, potentially reflecting different environments that they had previously inhabited. CONCLUSIONS: This study shows how archiving methods for vertebrae cartilage can affect primary element:Ca compositions. We demonstrate greatest element:Ca stabilities for vertebrae with limited bleach exposure that are either stored in ethanol or frozen, supporting the use of comparably archived sample sets in future elemental studies.


Subject(s)
Calcium/analysis , Mass Spectrometry , Sharks , Spine/chemistry , Animals , Female , Male , Marine Biology/methods , Marine Biology/standards , Mass Spectrometry/methods , Mass Spectrometry/standards , Metals/analysis , Sodium Hypochlorite/pharmacology , Specimen Handling/methods , Spine/drug effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...