Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Lett ; 18(12): 20220402, 2022 12.
Article in English | MEDLINE | ID: mdl-36514956

ABSTRACT

When and where animals reproduce influences the social, demographic and genetic properties of the groups and populations they live in. We examined the extent to which male spotted hyenas (Crocuta crocuta) coordinate their breeding-group choice. We tested whether their propensity to settle in the same group is shaped by passive processes driven by similarities in their socio-ecological background and genotype or by an adaptive process driven by kin selection. We compared the choices of 148 pairs of same-cohort males that varied in similarity and kinship. We found strong support for both processes. Coordination was highest (70% of pairs) for littermates, who share most cumulative similarity, lower (36%) among peers born in the same group to different mothers, and lowest (7%) among strangers originating from different groups and mothers. Consistent with the kin selection hypothesis, the propensity to choose the same group was density dependent for full siblings and close kin, but not distant kin. Coordination increased as the number of breeding females and male competitors in social groups increased, i.e. when costs of kin competition over mates decreased and benefits of kin cooperation increased. Our results contrast with the traditional view that breeding-group choice and dispersal are predominantly solitary processes.


Subject(s)
Hyaenidae , Animals , Female , Male , Hyaenidae/genetics
2.
Nat Ecol Evol ; 6(11): 1766-1776, 2022 11.
Article in English | MEDLINE | ID: mdl-36163259

ABSTRACT

The ultimate payoff of behaviours depends not only on their direct impact on an individual, but also on the impact on their relatives. Local relatedness-the average relatedness of an individual to their social environment-therefore has profound effects on social and life history evolution. Recent work has begun to show that local relatedness has the potential to change systematically over an individual's lifetime, a process called kinship dynamics. However, it is unclear how general these kinship dynamics are, whether they are predictable in real systems and their effects on behaviour and life history evolution. In this study, we combine modelling with data from real systems to explore the extent and impact of kinship dynamics. We use data from seven group-living mammals with diverse social and mating systems to demonstrate not only that kinship dynamics occur in animal systems, but also that the direction and magnitude of kinship dynamics can be accurately predicted using a simple model. We use a theoretical model to demonstrate that kinship dynamics can profoundly affect lifetime patterns of behaviour and can drive sex differences in helping and harming behaviour across the lifespan in social species. Taken together, this work demonstrates that kinship dynamics are likely to be a fundamental dimension of social evolution, especially when considering age-linked changes and sex differences in behaviour and life history.


Subject(s)
Mammals , Social Behavior , Animals , Female , Male , Reproduction , Longevity
3.
Science ; 376(6596): 1012-1016, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35617403

ABSTRACT

The rate of adaptive evolution, the contribution of selection to genetic changes that increase mean fitness, is determined by the additive genetic variance in individual relative fitness. To date, there are few robust estimates of this parameter for natural populations, and it is therefore unclear whether adaptive evolution can play a meaningful role in short-term population dynamics. We developed and applied quantitative genetic methods to long-term datasets from 19 wild bird and mammal populations and found that, while estimates vary between populations, additive genetic variance in relative fitness is often substantial and, on average, twice that of previous estimates. We show that these rates of contemporary adaptive evolution can affect population dynamics and hence that natural selection has the potential to partly mitigate effects of current environmental change.


Subject(s)
Adaptation, Biological , Animals, Wild , Biological Evolution , Genetic Fitness , Adaptation, Biological/genetics , Animals , Animals, Wild/genetics , Birds/genetics , Datasets as Topic , Genetic Variation , Mammals/genetics , Population Dynamics , Selection, Genetic
4.
Trends Ecol Evol ; 37(8): 706-718, 2022 08.
Article in English | MEDLINE | ID: mdl-35597702

ABSTRACT

In animal societies, control over resources and reproduction is often biased towards one sex. Yet, the ecological and evolutionary underpinnings of male-female power asymmetries remain poorly understood. We outline a comprehensive framework to quantify and predict the dynamics of male-female power relationships within and across mammalian species. We show that male-female power relationships are more nuanced and flexible than previously acknowledged. We then propose that enhanced reproductive control over when and with whom to mate predicts social empowerment across ecological and evolutionary contexts. The framework explains distinct pathways to sex-biased power: coercion and male-biased dimorphism constitute a co-evolutionary highway to male power, whereas female power emerges through multiple physiological, morphological, behavioural, and socioecological pathways.


Subject(s)
Biological Evolution , Reproduction , Sexual Behavior, Animal , Animals , Female , Male , Mammals , Sex Characteristics
5.
Nat Ecol Evol ; 3(1): 71-76, 2019 01.
Article in English | MEDLINE | ID: mdl-30455441

ABSTRACT

Identifying how dominance within and between the sexes is established is pivotal to understanding sexual selection and sexual conflict. In many species, members of one sex dominate those of the other in one-on-one interactions. Whether this results from a disparity in intrinsic attributes, such as strength and aggressiveness, or in extrinsic factors, such as social support, is currently unknown. We assessed the effects of both mechanisms on dominance in the spotted hyaena (Crocuta crocuta), a species where sexual size dimorphism is low and females often dominate males. We found that individuals with greater potential social support dominated one-on-one interactions in all social contexts, irrespective of their body mass and sex. Female dominance emerged from a disparity in social support in favour of females. This disparity was a direct consequence of male-biased dispersal and the disruptive effect of dispersal on social bonds. Accordingly, the degree of female dominance varied with the demographic and kin structure of the social groups, ranging from male and female co-dominance to complete female dominance. Our study shows that social support can drive sex-biased dominance and provides empirical evidence that a sex-role-defining trait can emerge without the direct effect of sex.


Subject(s)
Behavior, Animal , Hyaenidae/physiology , Social Behavior , Animals , Female , Male , Sex Characteristics
6.
Sci Adv ; 2(3): e1501236, 2016 03.
Article in English | MEDLINE | ID: mdl-27034982

ABSTRACT

Dispersal is a key driver of ecological and evolutionary processes. Despite substantial efforts to explain the evolution of dispersal, we still do not fully understand why individuals of the same sex of a species vary in their propensity to disperse. The dominant hypothesis emphasizes movements and assumes that leaving home (dispersal) and staying at home (philopatry) are two alternative strategies providing different fitness. It suggests that only individuals of high phenotypic quality can pursue the most beneficial strategy; the others are left to do a "best-of-a-bad" job. An alternative hypothesis emphasizes settlement decisions and suggests that all individuals pursue a single strategy of choosing the breeding habitat or group with the highest fitness prospects; choosing the natal group (philopatry) and choosing a nonnatal group (dispersal) are then outcomes of these decisions. We tested both hypotheses using a long-term study of a free-ranging population of a group-living carnivore, the spotted hyena. We combined demographic data with data on dispersal-relevant phenotypic traits, breeding-group choice, survival, and reproductive success of 254 males. Our results contradict the best-of-a-bad-job hypothesis: philopatric males and dispersers were of similar phenotypic quality, had similar fitness, and applied similar settlement rules based on the fitness prospects in groups. Our findings demonstrate that the distribution of breeding partners can be more important in shaping dispersal patterns than the costs associated with the dispersal movement. The study provides novel insights into the processes leading to the coexistence of philopatry and dispersal within the same sex of a species.


Subject(s)
Breeding , Reproduction , Sexual Behavior , Animal Migration , Animals , Ecosystem , Female , Hyaenidae , Male , Phenotype , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...