Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(27): e2403777121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38916998

ABSTRACT

Spinal cord dorsal horn inhibition is critical to the processing of sensory inputs, and its impairment leads to mechanical allodynia. How this decreased inhibition occurs and whether its restoration alleviates allodynic pain are poorly understood. Here, we show that a critical step in the loss of inhibitory tone is the change in the firing pattern of inhibitory parvalbumin (PV)-expressing neurons (PVNs). Our results show that PV, a calcium-binding protein, controls the firing activity of PVNs by enabling them to sustain high-frequency tonic firing patterns. Upon nerve injury, PVNs transition to adaptive firing and decrease their PV expression. Interestingly, decreased PV is necessary and sufficient for the development of mechanical allodynia and the transition of PVNs to adaptive firing. This transition of the firing pattern is due to the recruitment of calcium-activated potassium (SK) channels, and blocking them during chronic pain restores normal tonic firing and alleviates chronic pain. Our findings indicate that PV is essential for controlling the firing pattern of PVNs and for preventing allodynia. Developing approaches to manipulate these mechanisms may lead to different strategies for chronic pain relief.


Subject(s)
Chronic Pain , Parvalbumins , Parvalbumins/metabolism , Animals , Chronic Pain/metabolism , Chronic Pain/physiopathology , Mice , Neurons/metabolism , Neurons/physiology , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Male , Action Potentials/physiology , Small-Conductance Calcium-Activated Potassium Channels/metabolism
2.
Pain ; 161(11): 2619-2628, 2020 11.
Article in English | MEDLINE | ID: mdl-32569089

ABSTRACT

Children diagnosed with Christianson syndrome (CS), a rare X-linked neurodevelopmental disorder characterized by intellectual disability, epilepsy, ataxia, and mutism, also suffer from hyposensitivity to pain. This places them at risk of sustaining serious injuries that often go unattended. Christianson syndrome is caused by mutations in the alkali cation/proton exchanger SLC9A6/NHE6 that regulates recycling endosomal pH homeostasis and trafficking. Yet, it remains unclear how defects in this transporter lead to altered somatosensory functions. In this study, we validated a Nhe6 knockout (KO) mouse as a model of CS and used it to identify the cellular mechanisms underlying the elevated pain tolerance observed in CS patients. Within the central nervous system, NHE6 immunolabelling is detected in a small percentage of cortical neurons involved in pain processing, including those within the primary somatosensory and the anterior cingulate cortices as well as the periaqueductal gray. Interestingly, it is expressed in a larger percentage of nociceptors. Behaviourally, Nhe6 KO mice have decreased nocifensive responses to acute noxious thermal, mechanical, and chemical (ie, capsaicin) stimuli. The reduced capsaicin sensitivity in the KO mice correlates with a decreased expression of the transient receptor potential channel TRPV1 at the plasma membrane and capsaicin-induced Ca influx in primary cultures of nociceptors. These data indicate that NHE6 is a significant determinant of nociceptor function and pain behaviours, vital sensory processes that are impaired in CS.


Subject(s)
Ataxia , Epilepsy , Genetic Diseases, X-Linked , Intellectual Disability , Microcephaly , Ocular Motility Disorders , Animals , Capsaicin , Humans , Mice , Mice, Inbred C57BL , Nociception , Nociceptors , Sodium-Hydrogen Exchangers , TRPV Cation Channels
3.
Cell ; 180(5): 956-967.e17, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32084332

ABSTRACT

Mechanotransduction, the conversion of mechanical stimuli into electrical signals, is a fundamental process underlying essential physiological functions such as touch and pain sensing, hearing, and proprioception. Although the mechanisms for some of these functions have been identified, the molecules essential to the sense of pain have remained elusive. Here we report identification of TACAN (Tmem120A), an ion channel involved in sensing mechanical pain. TACAN is expressed in a subset of nociceptors, and its heterologous expression increases mechanically evoked currents in cell lines. Purification and reconstitution of TACAN in synthetic lipids generates a functional ion channel. Finally, a nociceptor-specific inducible knockout of TACAN decreases the mechanosensitivity of nociceptors and reduces behavioral responses to painful mechanical stimuli but not to thermal or touch stimuli. We propose that TACAN is an ion channel that contributes to sensing mechanical pain.


Subject(s)
Ion Channels/physiology , Mechanotransduction, Cellular/genetics , Nociceptors/metabolism , Pain/genetics , Touch/genetics , Animals , Gene Expression Regulation/genetics , Humans , Ion Channels/genetics , Lipids/genetics , Mice , Mice, Knockout , Pain/physiopathology , Patch-Clamp Techniques , Stress, Mechanical , Touch/physiology
4.
Cell Rep ; 28(6): 1429-1438.e4, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31390558

ABSTRACT

The dorsal horn of the spinal cord is the first integration site of somatosensory inputs from the periphery. In the superficial layers of the dorsal horn, nociceptive inputs are processed by a complex network of excitatory and inhibitory interneurons whose function and connectivity remain poorly understood. We examined the role of calretinin-expressing interneurons (CR neurons) in such processing and show that they receive direct inputs from nociceptive fibers and polysynaptic inputs from touch-sensitive Aß fibers. Their activation by chemogenetic or optogenetic stimulation produces mechanical allodynia and nocifensive responses. Furthermore, they monosynaptically engage spinoparabrachial (SPb) neurons in lamina I, suggesting CR neurons modulate one of the major ascending pain pathways of the dorsal horn. In conclusion, we propose a neuronal pathway in which CR neurons are positioned at the junction between nociceptive and innocuous circuits and directly control SPb neurons in lamina I.


Subject(s)
Calbindin 2/physiology , Interneurons/physiology , Posterior Horn Cells/physiology , Spinal Cord Dorsal Horn/cytology , Animals , Capsaicin , Hyperalgesia , Male , Memory , Mice, Inbred C57BL , Neural Pathways , Nociception/physiology , Optogenetics , Parabrachial Nucleus/cytology , Recruitment, Neurophysiological
5.
Pain ; 159(11): 2255-2266, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29965829

ABSTRACT

The lionfish (Pterois volitans) is a venomous invasive species found in the Caribbean and Northwestern Atlantic. It poses a growing health problem because of the increase in frequency of painful stings, for which no treatment or antidote exists, and the long-term disability caused by the pain. Understanding the venom's algogenic properties can help identify better treatment for these envenomations. In this study, we provide the first characterization of the pain and inflammation caused by lionfish venom and examine the mechanisms through which it causes pain using a combination of in vivo and in vitro approaches including behavioral, physiological, calcium imaging, and electrophysiological testing. Intraplantar injections of the venom produce a significant increase in pain behavior, as well as a marked increase in mechanical sensitivity for up to 24 hours after injection. The algogenic substance(s) are heat-labile peptides that cause neurogenic inflammation at the site of injection and induction of Fos and microglia activation in the superficial layers of the dorsal horn. Finally, calcium imaging and electrophysiology experiments show that the venom acts predominantly on nonpeptidergic, TRPV1-negative, nociceptors, a subset of neurons implicated in sensing mechanical pain. These data provide the first characterization of the pain and inflammation caused by lionfish venom, as well as the first insight into its possible cellular mechanism of action.


Subject(s)
Fish Venoms/toxicity , Gene Expression Regulation/drug effects , Pain Measurement/drug effects , Pain/chemically induced , Pain/metabolism , TRPV Cation Channels/metabolism , Acrylamides/therapeutic use , Analysis of Variance , Animals , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Calcium/metabolism , Calcium-Binding Proteins/metabolism , Capsaicin/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Exploratory Behavior/drug effects , Ganglia, Spinal/cytology , Gene Expression Regulation/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Hyperalgesia/physiopathology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/metabolism , Neurogenic Inflammation/chemically induced , Oncogene Proteins v-fos/metabolism , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/metabolism , TRPV Cation Channels/genetics , Time Factors , Touch
SELECTION OF CITATIONS
SEARCH DETAIL
...