Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nano Lett ; 22(1): 36-42, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34919402

ABSTRACT

Coupled nanomechanical resonators made of two-dimensional materials are promising for processing information with mechanical modes. However, the challenge for these systems is to control the coupling. Here, we demonstrate strong coupling of motion between two suspended membranes of the magnetic 2D material FePS3. We describe a tunable electromechanical mechanism for control over both the resonance frequency and the coupling strength using a gate voltage electrode under each membrane. We show that the coupling can be utilized for transferring data between drums by amplitude modulation. Finally, we also study the temperature dependence of the coupling and how it is affected by the antiferromagnetic phase transition characteristic of this material. The presented electrical coupling of resonant magnetic 2D membranes holds the promise of transferring mechanical energy over a distance at low electrical power, thus enabling novel data readout and information processing technologies.


Subject(s)
Micro-Electrical-Mechanical Systems , Equipment Design , Equipment Failure Analysis , Motion , Vibration
2.
Microsyst Nanoeng ; 6: 102, 2020.
Article in English | MEDLINE | ID: mdl-34567711

ABSTRACT

The high flexibility, impermeability and strength of graphene membranes are key properties that can enable the next generation of nanomechanical sensors. However, for capacitive pressure sensors, the sensitivity offered by a single suspended graphene membrane is too small to compete with commercial sensors. Here, we realize highly sensitive capacitive pressure sensors consisting of arrays of nearly ten thousand small, freestanding double-layer graphene membranes. We fabricate large arrays of small-diameter membranes using a procedure that maintains the superior material and mechanical properties of graphene, even after high-temperature annealing. These sensors are readout using a low-cost battery-powered circuit board, with a responsivity of up to 47.8 aF Pa-1 mm-2, thereby outperforming the commercial sensors.

3.
ACS Nano ; 13(9): 10845-10851, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31415148

ABSTRACT

Two-dimensional (2D) materials with strong in-plane anisotropy are of interest for enabling orientation-dependent, frequency-tunable, optomechanical devices. However, black phosphorus (bP), the 2D material with the largest anisotropy to date, is unstable as it degrades in air. In this work we show that As2S3 is an interesting alternative, with a similar anisotropy to bP, while at the same time having a much higher chemical stability. We probe the mechanical and optical anisotropy in As2S3 by three distinct angular-resolved experimental methods: Raman spectroscopy, atomic force microscopy (AFM), and resonance frequency analysis. Using a dedicated angle-resolved AFM force-deflection method, an in-plane anisotropy factor of [Formula: see text] is found in the Young's modulus of As2S3 with Ea-axis = 79.1 ± 10.1 GPa and Ec-axis = 47.2 ± 7.9 GPa. The high mechanical anisotropy is also shown to cause up to 65% difference in the resonance frequency, depending on crystal orientation and aspect ratio of membranes.

4.
Nano Lett ; 19(8): 5313-5318, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31340117

ABSTRACT

Despite theoretical predictions that graphene should be impermeable to all gases, practical experiments on sealed graphene nanodrums show small leak rates. Thus far, the exact mechanism for this permeation has remained unclear, because different potential leakage pathways have not been studied separately. Here, we demonstrate a sealing method that consists of depositing SiO2 across the edge of suspended multilayer graphene flakes using electron beam-induced deposition. By sealing, leakage along the graphene-SiO2 interface is blocked, which is observed to result in a reduction in permeation rate by a factor of 104. The experiments thus demonstrate that gas flow along the graphene-SiO2 interface tends to dominate the leak rate in unsealed graphene nanodrums. Moreover, the presented sealing method enables the study of intrinsic gas leakage through graphene membranes and can enable hermetic graphene membranes for pressure sensing applications.

5.
Phys Rev Lett ; 122(3): 036801, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30735404

ABSTRACT

We explore the superconducting phase diagram of the two-dimensional electron system at the LaAlO_{3}/SrTiO_{3} interface by monitoring the frequencies of the cavity modes of a coplanar waveguide resonator fabricated in the interface itself. We determine the phase diagram of the superconducting transition as a function of the temperature and electrostatic gating, finding that both the superfluid density and the transition temperature follow a dome shape but that the two are not monotonically related. The ground state of this two-dimensional electron system is interpreted as a Josephson junction array, where a transition from long- to short-range order occurs as a function of the electronic doping. The synergy between correlated oxides and superconducting circuits is revealed to be a promising route to investigate these exotic compounds, complementary to standard magnetotransport measurements.

6.
Nat Commun ; 9(1): 4837, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30446645

ABSTRACT

Electro-optic modulators based on micro-electromechanical systems have found success as elements for optical projectors, for simplified optical spectrometers, and as reflective-type screens that make use of light interference (Interferometric Modulator Display technology). The latter concept offers an exciting avenue for graphene nanomechanical structures to replace classical micro-electromechanical devices and bring about enhancement in performance, especially switching speed and voltage. In this work we study the optical response of electrically actuated graphene drumheads by means of spectrometric and stroboscopic experiments. The color reproducibility and speed of these membranes in producing the desired electro-optic modulation makes them suitable as pixels for high refresh rate displays. As a proof of concept, we demonstrate a Graphene Interferometric Modulator Display prototype with 5 µm-in-diameter pixels that compose a high resolution image (2500 pixels per inch)-equivalent to a 5″ display of 12K-whose color can be changed at frame rates of at least 400 Hz.

7.
Nano Lett ; 18(5): 2852-2858, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29653051

ABSTRACT

For the study and application of graphene membranes, it is essential to have means to control their resonance frequency and temperature. Here, we present an on-chip heater platform for local tuning of in-plane tension in graphene mechanical resonators. By Joule heating of a metallic suspension ring we show thermomechanical resonance frequency tuning in a few-layer (FL) graphene nanodrum, which is accompanied by an increase in its quality factor, which we attribute to the increase of the in-plane tension. The in situ control of temperature, in-plane tension, resonance frequency, and quality factor of suspended two-dimensional (2D) nanodrums makes this device a unique platform for investigating the origin of dissipation in these ultrathin structures and can be of fundamental importance for studying the thermal properties of 2D materials. Moreover, by simultaneously controlling the heater and the backgate voltage, we can independently control the resonance frequency and quality factor, which is of great importance for applications in sensors and resonant mechanical filters.

8.
ACS Appl Mater Interfaces ; 9(49): 43205-43210, 2017 Dec 13.
Article in English | MEDLINE | ID: mdl-29164848

ABSTRACT

To realize nanomechanical graphene-based pressure sensors, it is beneficial to have a method to electrically readout the static displacement of a suspended graphene membrane. Capacitive readout, typical in micro-electromechanical systems, gets increasingly challenging as one starts shrinking the dimensions of these devices because the expected responsivity of such devices is below 0.1 aF/Pa. To overcome the challenges of detecting small capacitance changes, we design an electrical readout device fabricated on top of an insulating quartz substrate, maximizing the contribution of the suspended membrane to the total capacitance of the device. The capacitance of the drum is further increased by reducing the gap size to 110 nm. Using an external pressure load, we demonstrate the successful detection of capacitance changes of a single graphene drum down to 50 aF, and pressure differences down to 25 mbar.

9.
Nano Lett ; 16(4): 2768-73, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-26954525

ABSTRACT

Membranes of suspended two-dimensional materials show a large variability in mechanical properties, in part due to static and dynamic wrinkles. As a consequence, experiments typically show a multitude of nanomechanical resonance peaks, which make an unambiguous identification of the vibrational modes difficult. Here, we probe the motion of graphene nanodrum resonators with spatial resolution using a phase-sensitive interferometer. By simultaneously visualizing the local phase and amplitude of the driven motion, we show that unexplained spectral features represent split degenerate modes. When taking these into account, the resonance frequencies up to the eighth vibrational mode agree with theory. The corresponding displacement profiles, however, are remarkably different from theory, as small imperfections increasingly deform the nodal lines for the higher modes. The Brownian motion, which is used to calibrate the local displacement, exhibits a similar mode pattern. The experiments clarify the complicated dynamic behavior of suspended two-dimensional materials, which is crucial for reproducible fabrication and applications.

10.
Nano Lett ; 16(1): 568-71, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26695136

ABSTRACT

The operating principle of squeeze-film pressure sensors is based on the pressure dependence of a membrane's resonance frequency, caused by the compression of the surrounding gas which changes the resonator stiffness. To realize such sensors, not only strong and flexible membranes are required, but also minimization of the membrane's mass is essential to maximize responsivity. Here, we demonstrate the use of a few-layer graphene membrane as a squeeze-film pressure sensor. A clear pressure dependence of the membrane's resonant frequency is observed, with a frequency shift of 4 MHz between 8 and 1000 mbar. The sensor shows a reproducible response and no hysteresis. The measured responsivity of the device is 9000 Hz/mbar, which is a factor 45 higher than state-of-the-art MEMS-based squeeze-film pressure sensors while using a 25 times smaller membrane area.

11.
Nano Lett ; 13(9): 4217-23, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23941358

ABSTRACT

We show that inspection with an optical microscope allows surprisingly simple and accurate identification of single and multilayer graphene domains in epitaxial graphene on silicon carbide (SiC/G) and is informative about nanoscopic details of the SiC topography, making it ideal for rapid and noninvasive quality control of as-grown SiC/G. As an illustration of the power of the method, we apply it to demonstrate the correlations between graphene morphology and its electronic properties by quantum magneto-transport.

SELECTION OF CITATIONS
SEARCH DETAIL
...