Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Soft Matter ; 19(38): 7343-7348, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37740282

ABSTRACT

We establish the existence of a cusp in the curvature of a solid sheet at its contact with a liquid subphase. We study two configurations in floating sheets where the solid-vapor-liquid contact line is a straight line and a circle, respectively. In the former case, a rectangular sheet is lifted at its one edge, whereas in the latter a gas bubble is injected beneath a floating sheet. We show that in both geometries the derivative of the sheet's curvature is discontinuous. We demonstrate that the boundary condition at the contact is identical in these two geometries, even though the shape of the contact line and the stress distribution in the sheet are very different.

2.
Phys Rev E ; 107(3-2): 035101, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37073032

ABSTRACT

Recent studies of elastocapillary phenomena have triggered interest in a basic variant of the classical Young-Laplace-Dupré (YLD) problem: the capillary interaction between a liquid drop and a thin solid sheet of low bending stiffness. Here we consider a two-dimensional model where the sheet is subjected to an external tensile load and the drop is characterized by a well-defined Young's contact angle θ_{Y}. Using a combination of numerical, variational, and asymptotic techniques, we discuss wetting as a function of the applied tension. We find that, for wettable surfaces with 0<θ_{Y}<π/2, complete wetting is possible below a critical applied tension due to the deformation of the sheet in contrast with rigid substrates requiring θ_{Y}=0. Conversely, for very large applied tensions, the sheet becomes flat and the classical YLD situation of partial wetting is recovered. At intermediate tensions, a vesicle forms in the sheet, which encloses most of the fluid, and we provide an accurate asymptotic description of this wetting state in the limit of small bending stiffness. We show that bending stiffness, however small, affects the entire shape of the vesicle. Rich bifurcation diagrams involving partial wetting and "vesicle" solution are found. For moderately small bending stiffnesses, partial wetting can coexist with both the vesicle solution and complete wetting. Finally, we identify a tension-dependent bendocapillary length, λ_{BC}, and find that the shape of the drop is determined by the ratio A/λ_{BC}^{2}, where A is the area of the drop.

3.
Proc Natl Acad Sci U S A ; 120(12): e2212290120, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36930601

ABSTRACT

Everyday experience confirms the tendency of adhesive films to detach from spheroidal regions of rigid substrates-what is a petty frustration when placing a sticky band aid onto a knee is a more serious matter in the coating and painting industries. Irrespective of their resistance to bending, a key driver of such phenomena is Gauss' Theorema Egregium, which implies that naturally flat sheets cannot conform to doubly curved surfaces without developing a strain whose magnitude grows sharply with the curved area. Previous attempts to characterize the onset of curvature-induced delamination, and the complex patterns it gives rise to, assumed a dewetting-like mechanism in which the propensity of two materials to form contact through interfacial energy is modified by an elastic energy penalty. We show that this approach may characterize moderately bendable sheets but fails qualitatively to describe the curvature-induced delamination of ultrathin films, whose mechanics is governed by their propensity to buckle and delaminate partially, under minute levels of compression. Combining mechanical and geometrical considerations, we introduce a minimal model for curvature-induced delamination accounting for the two buckling motifs that underlie partial delamination: shallow "rucks" and localized "folds". We predict nontrivial scaling rules for the onset of curvature-induced delamination and various features of the emerging patterns, which compare well with experiments. Beyond gaining control on the use of ultrathin adhesives in cutting-edge technologies such as stretchable electronics, our analysis is a significant step toward quantifying the multiscale morphology that emerges upon imposing geometrical and mechanical constraints on highly bendable solid objects.

4.
Eur Phys J E Soft Matter ; 44(7): 94, 2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34241720

ABSTRACT

We address the fully developed wrinkle pattern formed upon stretching a Hookean, rectangular-shaped sheet, when the longitudinal tensile load induces transverse compression that far exceeds the stability threshold of a purely planar deformation. At this "far-from-threshold" parameter regime, which has been the subject of the celebrated Cerda-Mahadevan model (Cerda and Mahadevan in Phys Rev Lett 90:074302, 2003), the wrinkle pattern expands throughout the length of the sheet and the characteristic wavelength of undulations is much smaller than its width. Employing Surface Evolver simulations over a range of sheet thicknesses and tensile loads, we elucidate the theoretical underpinnings of the far-from-threshold framework in this setup. We show that the evolution of wrinkles comes in tandem with collapse of transverse compressive stress, rather than vanishing transverse strain (which was hypothesized by Cerda and Mahadevan in Phys Rev Lett 90:074302, 2003), such that the stress field approaches asymptotically a compression-free limit, describable by tension field theory. We compute the compression-free stress field by simulating a Hookean sheet that has finite stretching modulus but no bending rigidity, and show that this singular limit encapsulates the geometrical nonlinearity underlying the amplitude-wavelength ratio of wrinkle patterns in physical, highly bendable sheets, even though the actual strains may be so small that the local mechanics is perfectly Hookean. Finally, we revisit the balance of bending and stretching energies that gives rise to a favorable wrinkle wavelength, and study the consequent dependence of the wavelength on the tensile load as well as the thickness and length of the sheet.

5.
Eur Phys J E Soft Matter ; 44(7): 92, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34231089

ABSTRACT

The wrinkle pattern exhibited upon stretching a rectangular sheet has attracted considerable interest in the "extreme mechanics" community. Nevertheless, key aspects of this notable phenomenon remain elusive. Specifically-what is the origin of the compressive stress underlying the instability of the planar state? what is the nature of the ensuing bifurcation? how does the shape evolve from a critical, near-threshold regime to a fully developed pattern of parallel wrinkles that permeate most of the sheet? In this paper we address some of these questions through numerical simulations and analytic study of the planar state in Hookean sheets. We show that transverse compression is a boundary effect, which originates from the relative extension of the clamped edges with respect to the transversely contracted, compression-free bulk of the sheet, and draw analogy between this edge-induced compression and Moffatt vortices in viscous, cavity-driven flow. Next, we address the instability of the planar state and show that it gives rise to a buckling pattern, localized near the clamped edges, which evolves-upon increasing the tensile load-to wrinkles that invade the uncompressed portion of the sheet. Crucially, we show that the key aspects of the process-from the formation of transversely compressed zones, to the consequent instability of the planar state and the emergence of a wrinkle pattern-can be understood within a Hookean framework, where the only origin of nonlinear response is geometric, rather than a non-Hookean stress-strain relation.

6.
Phys Rev E ; 103(4-1): 043002, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34005936

ABSTRACT

We revisit the indentation of a thin solid sheet of size R_{sheet} suspended on a circular hole of radius R≪R_{sheet} in a smooth rigid substrate, addressing the effects of boundary conditions at the hole's edge. Introducing a basic theoretical model for the van der Waals (vdW) sheet-substrate attraction, we demonstrate the dramatic effect of replacing the clamping condition (Schwerin model) with a sliding condition, whereby the supported part of the sheet is allowed to slide towards the indenter and relax the induced hoop compression through angstrom-scale deflections from the thermodynamic equilibrium (determined by the vdW potential). We highlight the possibility that the indentation force F may not exhibit the commonly anticipated cubic dependence on the indentation depth (F∝δ^{3}), in which the proportionality constant is governed by the sheet's stretching modulus and the hole's radius R, but rather a pseduolinear response F∝δ, whereby the proportionality constant is governed by the bending modulus, the vdW attraction, and the sheet's size R_{sheet}≫R.

7.
Proc Natl Acad Sci U S A ; 118(14)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33790019

ABSTRACT

Nonlinear mechanics of solids is an exciting field that encompasses both beautiful mathematics, such as the emergence of instabilities and the formation of complex patterns, as well as multiple applications. Two-dimensional crystals and van der Waals (vdW) heterostructures allow revisiting this field on the atomic level, allowing much finer control over the parameters and offering atomistic interpretation of experimental observations. In this work, we consider the formation of instabilities consisting of radially oriented wrinkles around mono- and few-layer "bubbles" in two-dimensional vdW heterostructures. Interestingly, the shape and wavelength of the wrinkles depend not only on the thickness of the two-dimensional crystal forming the bubble, but also on the atomistic structure of the interface between the bubble and the substrate, which can be controlled by their relative orientation. We argue that the periodic nature of these patterns emanates from an energetic balance between the resistance of the top membrane to bending, which favors large wavelength of wrinkles, and the membrane-substrate vdW attraction, which favors small wrinkle amplitude. Employing the classical "Winkler foundation" model of elasticity theory, we show that the number of radial wrinkles conveys a valuable relationship between the bending rigidity of the top membrane and the strength of the vdW interaction. Armed with this relationship, we use our data to demonstrate a nontrivial dependence of the bending rigidity on the number of layers in the top membrane, which shows two different regimes driven by slippage between the layers, and a high sensitivity of the vdW force to the alignment between the substrate and the membrane.

8.
Eur Phys J E Soft Matter ; 44(2): 11, 2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33683490

ABSTRACT

We revisit the delamination of a solid adhesive sheet under uniaxial compression from a flat, rigid substrate. Using energetic considerations and scaling arguments, we show that the phenomenology is governed by three dimensionless groups, which characterize the level of confinement imposed on the sheet, as well as its extensibility and bendability. Recognizing that delamination emerges through a subcritical bifurcation from a planar, uniformly compressed state, we predict that the dependence of the threshold confinement level on the extensibility and bendability of the sheet, as well as the delaminated shape at threshold, varies markedly between two asymptotic regimes of these parameters. For sheets whose bendability is sufficiently high, the delaminated shape is a large-slope "fold," where the amplitude is proportional to the imposed confinement. In contrast, for lower values of the bendability parameter, the delaminated shape is a small-slope "ruck," whose amplitude increases more moderately upon increasing confinement. Realizing that the instability of the fully laminated state requires a finite extensibility of the sheet, we introduce a simple model that allows us to construct a bifurcation diagram that governs the delamination process.

9.
Nat Mater ; 19(7): 808, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32327727

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Nat Mater ; 19(7): 690-693, 2020 07.
Article in English | MEDLINE | ID: mdl-32300200
11.
Proc Natl Acad Sci U S A ; 117(8): 3938-3943, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32047032

ABSTRACT

Thin solids often develop elastic instabilities and subsequently complex, multiscale deformation patterns. Revealing the organizing principles of this spatial complexity has ramifications for our understanding of morphogenetic processes in plant leaves and animal epithelia and perhaps even the formation of human fingerprints. We elucidate a primary source of this morphological complexity-an incompatibility between an elastically favored "microstructure" of uniformly spaced wrinkles and a "macrostructure" imparted through the wrinkle director and dictated by confinement forces. Our theory is borne out of experiments and simulations of floating sheets subjected to radial stretching. By analyzing patterns of grossly radial wrinkles we find two sharply distinct morphologies: defect-free patterns with a fixed number of wrinkles and nonuniform spacing and patterns of uniformly spaced wrinkles separated by defect-rich buffer zones. We show how these morphological types reflect distinct minima of a Ginzburg-Landau functional-a coarse-grained version of the elastic energy, which penalizes nonuniform wrinkle spacing and amplitude, as well as deviations of the actual director from the axis imposed by confinement. Our results extend the effective description of wrinkle patterns as liquid crystals [H. Aharoni et al, Nat. Commun. 8, 15809 (2017)], and we highlight a fascinating analogy between the geometry-energy interplay that underlies the proliferation of defects in the mechanical equilibrium of confined sheets and in thermodynamic phases of superconductors and chiral liquid crystals.

12.
Phys Rev E ; 100(5-1): 053003, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31869959

ABSTRACT

We demonstrate with experiments that wrinkling in stretched latex sheets occurs over finite strains, and that their amplitudes grow and then decay to zero over a greater range of applied strains compared with linear elastic materials. The wrinkles occur provided the sheet is sufficiently thin compared to its width, and only over a finite range of length-to-width ratios. We show with simulations that the Mooney-Rivlin hyperelastic model describes the observed growth and decay of the wrinkles in our experiments. The decrease of wavelength with applied tension is found to be consistent with a far-from-threshold scenario proposed by Cerda and Mahadevan in 2003. However, the amplitude is observed to decrease with increasing tensile load, in contrast with the prediction of their original model. We address the crucial assumption of collapse of compressive stress, as opposed to collapse of compressive strain, underlying the far-from-threshold analysis, and test it by measuring the actual arc-length of the stretched sheet in the transverse direction and its difference from the width of a planar projection of the wrinkled shape. Our experiments and numerical simulations indicate a collapse of the compressive stress and reveal that a proper implementation of the far-from-threshold analysis is consistent with the nonmonotonic dependence of the amplitude on applied tensile load observed in experiments and simulations. Thus, our work support and extend far-from-threshold analysis to the stretching problem of rectangular hyperelastic sheets.

13.
Proc Natl Acad Sci U S A ; 116(5): 1483-1488, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30591569

ABSTRACT

The complex morphologies exhibited by spatially confined thin objects have long challenged human efforts to understand and manipulate them, from the representation of patterns in draped fabric in Renaissance art to current-day efforts to engineer flexible sensors that conform to the human body. We introduce a theoretical principle, broadly generalizing Euler's elastica-a core concept of continuum mechanics that invokes the energetic preference of bending over straining a thin solid object and that has been widely applied to classical and modern studies of beams and rods. We define a class of geometrically incompatible confinement problems, whereby the topography imposed on a thin solid body is incompatible with its intrinsic ("target") metric and, as a consequence of Gauss' Theorema Egregium, induces strain. By focusing on a prototypical example of a sheet attached to a spherical substrate, numerical simulations and analytical study demonstrate that the mechanics is governed by a principle, which we call the "Gauss-Euler elastica" This emergent rule states that-despite the unavoidable strain in such an incompatible confinement-the ratio between the energies stored in straining and bending the solid may be arbitrarily small. The Gauss-Euler elastica underlies a theoretical framework that greatly simplifies the daunting task of solving the highly nonlinear equations that describe thin solids at mechanical equilibrium. This development thus opens possibilities for attacking a broad class of phenomena governed by the coupling of geometry and mechanics.

14.
Phys Rev E ; 98(1-1): 013003, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30110841

ABSTRACT

A thin, elastic sheet floating on the surface of a liquid bath wrinkles when poked at its center. We study the onset of wrinkling as well as the evolution of the pattern as indentation progresses far beyond the wrinkling threshold. We use tension field theory to describe the macroscopic properties of the deformed film and show that the system passes through a host of different regimes, even while the deflections and strains remain small. We show that the effect of the finite size of the sheet ultimately plays a key role in determining the location of the wrinkle pattern, and obtain scaling relations that characterize the number of wrinkles at threshold and its variation as the indentation progresses.

15.
Soft Matter ; 14(24): 4913-4934, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29761194

ABSTRACT

We consider the equilibrium of liquid droplets sitting on thin elastic sheets that are subject to a boundary tension and/or are clamped at their edge. We use scaling arguments, together with a detailed analysis based on the Föppl-von-Kármán equations, to show that the presence of the droplet may significantly alter the stress locally if the tension in the dry sheet is weak compared to an intrinsic elasto-capillary tension scale γ2/3(Et)1/3 (with γ the droplet surface tension, t the sheet thickness and E its Young modulus). Our detailed analysis suggests that some recent experiments may lie in just such a "non-perturbative" regime. As a result, measurements of the tension in the sheet at the contact line (inferred from the contact angles of the sheet with the liquid-vapour interface) do not necessarily reflect the true tension within the sheet prior to wetting. We discuss various characteristics of this non-perturbative regime.

16.
Soft Matter ; 13(11): 2264-2278, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28262872

ABSTRACT

We study the indentation of ultrathin elastic sheets clamped to the edge of a circular hole. This classical setup has received considerable attention lately, being used by various experimental groups as a probe to measure the surface properties and stretching modulus of thin solid films. Despite the apparent simplicity of this method, the geometric nonlinearity inherent in the mechanical response of thin solid objects renders the analysis of the resulting data a nontrivial task. Importantly, the essence of this difficulty is in the geometric coupling between in-plane stress and out-of-plane deformations, and hence is present in the behaviour of Hookean solids even when the slope of the deformed membrane remains small. Here we take a systematic approach to address this problem, using the membrane limit of the Föppl-von-Kármán equations. This approach highlights some of the dangers in the use of approximate formulae in the metrology of solid films, which can introduce large errors; we suggest how such errors may be avoided in performing experiments and analyzing the resulting data.

17.
Phys Rev Lett ; 118(4): 048004, 2017 Jan 27.
Article in English | MEDLINE | ID: mdl-28186795

ABSTRACT

Predicting the large-amplitude deformations of thin elastic sheets is difficult due to the complications of self contact, geometric nonlinearities, and a multitude of low-lying energy states. We study a simple two-dimensional setting where an annular polymer sheet floating on an air-water interface is subjected to different tensions on the inner and outer rims. The sheet folds and wrinkles into many distinct morphologies that break axisymmetry. These states can be understood within a recent geometric approach for determining the gross shape of extremely bendable yet inextensible sheets by extremizing an appropriate area functional. Our analysis explains the remarkable feature that the observed buckling transitions between wrinkled and folded shapes are insensitive to the bending rigidity of the sheet.

18.
Phys Rev Lett ; 117(10): 104301, 2016 Sep 02.
Article in English | MEDLINE | ID: mdl-27636477

ABSTRACT

Twisted ribbons under tension exhibit a remarkably rich morphology, from smooth and wrinkled helicoids, to cylindrical or faceted patterns. This complexity emanates from the instability of the natural, helicoidal symmetry of the system, which generates both longitudinal and transverse stresses, thereby leading to buckling of the ribbon. Here, we focus on the tessellation patterns made of triangular facets. Our experimental observations are described within an "asymptotic isometry" approach that brings together geometry and elasticity. The geometry consists of parametrized families of surfaces, isometric to the undeformed ribbon in the singular limit of vanishing thickness and tensile load. The energy, whose minimization selects the favored structure among those families, is governed by the tensile work and bending cost of the pattern. This framework describes the coexistence lines in a morphological phase diagram, and determines the domain of existence of faceted structures.

19.
Proc Natl Acad Sci U S A ; 113(5): 1144-9, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26787902

ABSTRACT

Wrinkle patterns in compressed thin sheets are ubiquitous in nature and technology, from the furrows on our foreheads to crinkly plant leaves, from ripples on plastic-wrapped objects to the protein film on milk. The current understanding of an elementary descriptor of wrinkles--their wavelength--is restricted to deformations that are parallel, spatially uniform, and nearly planar. However, most naturally occurring wrinkles do not satisfy these stipulations. Here we present a scheme that quantitatively explains the wrinkle wavelength beyond such idealized situations. We propose a local law that incorporates both mechanical and geometrical effects on the spatial variation of wrinkle wavelength. Our experiments on thin polymer films provide strong evidence for its validity. Understanding how wavelength depends on the properties of the sheet and the underlying liquid or elastic subphase is crucial for applications where wrinkles are used to sculpt surface topography, to measure properties of the sheet, or to infer forces applied to a film.

20.
Nat Mater ; 14(12): 1206-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26322716

ABSTRACT

Elastic sheets offer a path to encapsulating a droplet of one fluid in another that is different from that of traditional molecular or particulate surfactants. In wrappings of fluids by sheets of moderate thickness with petals designed to curl into closed shapes, capillarity balances bending forces. Here, we show that, by using much thinner sheets, the constraints of this balance can be lifted to access a regime of high sheet bendability that brings three major advantages: ultrathin sheets automatically achieve optimally efficient shapes that maximize the enclosed volume of liquid for a fixed area of sheet; interfacial energies and mechanical properties of the sheet are irrelevant within this regime, thus allowing for further functionality; and complete coverage of the fluid can be achieved without special sheet designs. We propose and validate a general geometric model that captures the entire range of this new class of wrapped and partially wrapped shapes.

SELECTION OF CITATIONS
SEARCH DETAIL
...