Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Nat Commun ; 15(1): 5537, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38956413

ABSTRACT

Circadian gene expression is fundamental to the establishment and functions of the circadian clock, a cell-autonomous and evolutionary-conserved timing system. Yet, how it is affected by environmental-circadian disruption (ECD) such as shiftwork and jetlag are ill-defined. Here, we provided a comprehensive and comparative description of male liver circadian gene expression, encompassing transcriptomes, whole-cell proteomes and nuclear proteomes, under normal and after ECD conditions. Under both conditions, post-translation, rather than transcription, is the dominant contributor to circadian functional outputs. After ECD, post-transcriptional and post-translational processes are the major contributors to whole-cell or nuclear circadian proteome, respectively. Furthermore, ECD re-writes the rhythmicity of 64% transcriptome, 98% whole-cell proteome and 95% nuclear proteome. The re-writing, which is associated with changes of circadian regulatory cis-elements, RNA-processing and protein localization, diminishes circadian regulation of fat and carbohydrate metabolism and persists after one week of ECD-recovery.


Subject(s)
Circadian Clocks , Circadian Rhythm , Liver , Proteome , Animals , Liver/metabolism , Proteome/metabolism , Male , Circadian Rhythm/physiology , Circadian Rhythm/genetics , Circadian Clocks/genetics , Circadian Clocks/physiology , Transcriptome , Mice , Mice, Inbred C57BL , Gene Expression Regulation , Jet Lag Syndrome/metabolism , Shift Work Schedule
2.
bioRxiv ; 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37693605

ABSTRACT

Circadian gene expression is fundamental to the establishment and functions of the circadian clock, a cell-autonomous and evolutionary-conserved timing system. Yet, how it is affected by environmental-circadian disruption (ECD) such as shiftwork and jetlag, which impact millions of people worldwide, are ill-defined. Here, we provided the first comprehensive description of liver circadian gene expression under normal and after ECD conditions. We found that post-transcription and post-translation processes are dominant contributors to whole-cell or nuclear circadian proteome, respectively. Furthermore, rhythmicity of 64% transcriptome, 98% whole-cell proteome and 95% nuclear proteome is re-written by ECD. The re-writing, which is associated with changes of circadian cis-regulatory elements, RNA-processing and protein trafficking, diminishes circadian regulation of fat and carbohydrate metabolism and persists after one week of ECD-recovery.

3.
Biology (Basel) ; 12(8)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37627020

ABSTRACT

The suprachiasmatic nuclei (SCN) of the hypothalamus contain the circadian pacemaker that coordinates mammalian rhythms in tune with the day-night cycle. Understanding the determinants of the intrinsic rhythmicity of this biological clock, its outputs, and resetting by environmental cues, has been a longstanding goal of the field. Integrated techniques of neurophysiology, including lesion studies and in vivo multi-unit electrophysiology, have been key to characterizing the rhythmic nature and outputs of the SCN in animal models. In parallel, reduced ex vivo and in vitro approaches have permitted us to unravel molecular, cellular, and multicellular mechanisms underlying the pacemaker properties of the SCN. New questions have emerged in recent years that will require combining investigation at a cell resolution within the physiological context of the living animal: What is the role of specific cell subpopulations in the SCN neural network? How do they integrate various external and internal inputs? What are the circuits involved in controlling other body rhythms? Here, we review what we have already learned about the SCN from in vivo studies, and how the recent development of new genetically encoded tools and cutting-edge imaging technology in neuroscience offers chronobiologists the opportunity to meet these challenges.

4.
Am J Physiol Heart Circ Physiol ; 325(1): H106-H112, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37205732

ABSTRACT

Environmental cues such as light and timing of food intake influence molecular clocks that produce circadian rhythmicity of many biological functions. The master circadian clock is entrained by light input and synchronizes with peripheral clocks in every organ of the body. Careers that require rotating shift work schedules predispose workers to a constant desynchronization of these biological clocks and are associated with increased risk of cardiovascular disease. We used a stroke-prone spontaneously hypertensive rat model exposed to a known biological desynchronizer, chronic environmental circadian disruption (ECD), to test the hypothesis that it would accelerate the time to stroke onset. We then investigated whether time-restricted feeding could delay stroke onset and evaluated its usefulness as a countermeasure when combined with the constant disruption of the light cycle. We found that phase advancing of the light schedule accelerated stroke onset. Restricting food access time to 5 h/day regardless of lighting profoundly delayed stroke onset in both standard 12-h:12-h light/dark or ECD-lighting conditions compared with ad libitum feeding; however, acceleration by ECD versus control lighting conditions was still observed. Since hypertension is a precursor to stroke in this model, we assessed blood pressure in a small cohort longitudinally using telemetry. Mean daily systolic and diastolic blood pressure increased in a similar manner across rats in control and ECD conditions, thus hypertension was not grossly accelerated to cause earlier strokes. However, we observed intermittent dampening of rhythms after each shift of the light cycle reminiscent of a relapsing-remitting nondipping state. Our results suggest that constant disruption of environmental rhythms may be associated with an increased risk of cardiovascular complications in the presence of cardiovascular risk factors.NEW & NOTEWORTHY This stroke-prone spontaneously hypertensive rat model significantly delayed stroke onset with the timed food restriction intervention. Blood pressure recordings in this same model were continuous through the 3 mo and showed dampened systolic rhythms after each shift in the lighting schedule.


Subject(s)
Circadian Clocks , Stroke , Rats , Animals , Rats, Inbred SHR , Blood Pressure , Longevity , Light , Circadian Rhythm/physiology , Circadian Clocks/physiology
5.
Proc Natl Acad Sci U S A ; 120(4): e2209329120, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36656857

ABSTRACT

The suprachiasmatic nucleus (SCN) is composed of functionally distinct subpopulations of GABAergic neurons which form a neural network responsible for synchronizing most physiological and behavioral circadian rhythms in mammals. To date, little is known regarding which aspects of SCN rhythmicity are generated by individual SCN neurons, and which aspects result from neuronal interaction within a network. Here, we utilize in vivo miniaturized microscopy to measure fluorescent GCaMP-reported calcium dynamics in arginine vasopressin (AVP)-expressing neurons in the intact SCN of awake, behaving mice. We report that SCN AVP neurons exhibit periodic, slow calcium waves which we demonstrate, using in vivo electrical recordings, likely reflect burst firing. Further, we observe substantial heterogeneity of function in that AVP neurons exhibit unstable rhythms, and relatively weak rhythmicity at the population level. Network analysis reveals that correlated cellular behavior, or coherence, among neuron pairs also exhibited stochastic rhythms with about 33% of pairs rhythmic at any time. Unlike single-cell variables, coherence exhibited a strong rhythm at the population level with time of maximal coherence among AVP neuronal pairs at CT/ZT 6 and 9, coinciding with the timing of maximal neuronal activity for the SCN as a whole. These results demonstrate robust circadian variation in the coordination between stochastically rhythmic neurons and that interactions between AVP neurons in the SCN may be more influential than single-cell activity in the regulation of circadian rhythms. Furthermore, they demonstrate that cells in this circuit, like those in many other circuits, exhibit profound heterogenicity of function over time and space.


Subject(s)
Arginine Vasopressin , Circadian Rhythm , Suprachiasmatic Nucleus , Animals , Mice , Arginine , Circadian Rhythm/physiology , Neurons/metabolism , Suprachiasmatic Nucleus/metabolism
6.
J Biol Rhythms ; 37(1): 53-77, 2022 02.
Article in English | MEDLINE | ID: mdl-35023384

ABSTRACT

Circadian rhythms are endogenously generated physiological and molecular rhythms with a cycle length of about 24 h. Bioluminescent reporters have been exceptionally useful for studying circadian rhythms in numerous species. Here, we report development of a reporter mouse generated by modification of a widely expressed and highly rhythmic gene encoding D-site albumin promoter binding protein (Dbp). In this line of mice, firefly luciferase is expressed from the Dbp locus in a Cre recombinase-dependent manner, allowing assessment of bioluminescence rhythms in specific cellular populations. A mouse line in which luciferase expression was Cre-independent was also generated. The Dbp reporter alleles do not alter Dbp gene expression rhythms in liver or circadian locomotor activity rhythms. In vivo and ex vivo studies show the utility of the reporter alleles for monitoring rhythmicity. Our studies reveal cell-type-specific characteristics of rhythms among neuronal populations within the suprachiasmatic nuclei ex vivo. In vivo studies show Dbp-driven bioluminescence rhythms in the liver of Albumin-Cre;DbpKI/+ "liver reporter" mice. After a shift of the lighting schedule, locomotor activity achieved the proper phase relationship with the new lighting cycle more rapidly than hepatic bioluminescence did. As previously shown, restricting food access to the daytime altered the phase of hepatic rhythmicity. Our model allowed assessment of the rate of recovery from misalignment once animals were provided with food ad libitum. These studies confirm the previously demonstrated circadian misalignment following environmental perturbations and reveal the utility of this model for minimally invasive, longitudinal monitoring of rhythmicity from specific mouse tissues.


Subject(s)
Circadian Rhythm , Suprachiasmatic Nucleus , Albumins/genetics , Albumins/metabolism , Animals , Circadian Rhythm/genetics , Genes, Reporter , Luciferases/genetics , Luciferases/metabolism , Mice , Photoperiod , Suprachiasmatic Nucleus/metabolism
7.
Article in English | MEDLINE | ID: mdl-34948768

ABSTRACT

The disruption of inflammatory responses is a potential mechanism behind the harmful effects of shift work and is associated with increased risk of hypertension, stroke, obesity, diabetes, and cancer. These responses are linked to the proliferation of leukocytes in shift workers, suggesting a systemic signal as a potential mediator. The purpose of this study was to assess the relationship between systemic inflammation, leukocyte counts, and systemic endotoxemia in samples from a diverse cohort of day workers and shift workers. Participants (normothermic and normotensive) were healthy volunteers, non-smoking, and drug- and medication-free. The following outcomes were measured: C-reactive protein, TNF-α, IL-6, IL-1ß, IL-10, leukocyte counts (monocytes, lymphocytes, and neutrophils), and lipopolysaccharide-binding protein (LBP). Risk factors that increase systemic inflammation, such as blood pressure, sleep loss, and cortisol, were also assessed. The results indicated that shift workers slept significantly less than day workers and had significantly increased concentrations of all of the cytokines measured as well as plasma cortisol. Regression models found that after controlling for covariates, shift-work exposure predicted the significant increase observed in IL-10, leukocyte counts, and LBP. Our results suggest that acute increases in low-grade systemic endotoxemia are unresolved during chronic shift-work exposure. This ongoing immune challenge may underlie the disrupted inflammatory responses characteristic of shift-work-related pathologies. Systemic endotoxemia may represent a novel target to investigate the early effects of exposure to shift-work schedules.


Subject(s)
Interleukin-10 , Shift Work Schedule , Acute-Phase Proteins , Carrier Proteins , Cross-Sectional Studies , Cytokines , Healthy Volunteers , Humans , Inflammation , Leukocyte Count , Lipopolysaccharides , Membrane Glycoproteins
8.
Am J Physiol Renal Physiol ; 320(2): F224-F233, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33356955

ABSTRACT

Nontraditional work schedules, such as shift work, have been associated with numerous health issues, including cardiovascular and metabolic disease. These work schedules can chronically misalign environmental timing cues with internal circadian clock systems in the brain and in peripheral organs, leading to dysfunction of those systems and their associated biological processes. Environmental circadian disruption in the kidney may be an important factor in the increased incidence of hypertension and adverse health outcomes in human shift workers. The relationship between renal rhythmicity and injury resilience is not well understood, especially in the context of environmental, rather than genetic, manipulations of the circadian system. We conducted a longitudinal study to determine whether chronic shifting of the light cycle that mimics shift work schedules would disrupt output rhythms of the kidney and accelerate kidney injury in salt-loaded male spontaneously hypertensive, stroke-prone rats. We observed that chronic shifting of the light-dark (LD) cycle misaligned and decreased the amplitude of urinary volume rhythms as the kidney phase-shifted to match each new lighting cycle. This schedule also accelerated glomerular and tubular injury marker excretion, as quantified by nephrin and KIM-1 compared with rats kept in a static LD cycle. These data suggest that disrupted rhythms in the kidney may decrease resilience and contribute to disease development in systems dependent on renal and cardiovascular functions.


Subject(s)
Circadian Rhythm , Kidney/metabolism , Kidney/physiology , Photoperiod , Animals , Biomarkers , Male , Rats , Rats, Inbred SHR , Sodium Chloride, Dietary/administration & dosage , Sodium Chloride, Dietary/toxicity , Urinalysis
9.
Methods Mol Biol ; 2130: 287-294, 2021.
Article in English | MEDLINE | ID: mdl-33284452

ABSTRACT

Circadian rhythms in cellular function can be monitored in real time with bioluminescence imaging. In this approach, bioluminescence is produced by an enzymatic reaction, which can be used to report dynamic changes in gene or protein expression in living cells. Bioluminescence imaging in circadian experiments typically uses an ex vivo slice preparation, with the most commonly studied structure being the master clock in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus. Here we describe procedures for dissecting and collecting SCN slices for bioluminescence imaging experiments.


Subject(s)
Circadian Clocks , Connectome/methods , Suprachiasmatic Nucleus/physiology , Animals , Genes, Reporter , Luciferases/genetics , Luciferases/metabolism , Mice , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Suprachiasmatic Nucleus/metabolism
11.
Sci Rep ; 10(1): 15389, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32958779

ABSTRACT

Shift work, performed by approximately 21 million Americans, is irregular or unusual work schedule hours occurring after 6:00 pm. Shift work has been shown to disrupt circadian rhythms and is associated with several adverse health outcomes and chronic diseases such as cancer, gastrointestinal and psychiatric diseases and disorders. It is unclear if shift work influences the complications associated with certain infectious agents, such as pelvic inflammatory disease, ectopic pregnancy and tubal factor infertility resulting from genital chlamydial infection. We used an Environmental circadian disruption (ECD) model mimicking circadian disruption occurring during shift work, where mice had a 6-h advance in the normal light/dark cycle (LD) every week for a month. Control group mice were housed under normal 12/12 LD cycle. Our hypothesis was that compared to controls, mice that had their circadian rhythms disrupted in this ECD model will have a higher Chlamydia load, more pathology and decreased fertility rate following Chlamydia infection. Results showed that, compared to controls, mice that had their circadian rhythms disrupted (ECD) had higher Chlamydia loads, more tissue alterations or lesions, and lower fertility rate associated with chlamydial infection. Also, infected ECD mice elicited higher proinflammatory cytokines compared to mice under normal 12/12 LD cycle. These results imply that there might be an association between shift work and the increased likelihood of developing more severe disease from Chlamydia infection.


Subject(s)
Chlamydia Infections/etiology , Circadian Rhythm/physiology , Shift Work Schedule/adverse effects , Animals , Chlamydia/pathogenicity , Chlamydia Infections/metabolism , Chlamydia Infections/pathology , Chlamydia muridarum/pathogenicity , Female , Mice , Mice, Inbred C57BL , Pelvic Inflammatory Disease/etiology , Photoperiod , Pregnancy , Pregnancy, Ectopic/etiology
12.
J Biol Rhythms ; 35(4): 368-376, 2020 08.
Article in English | MEDLINE | ID: mdl-32508262

ABSTRACT

Understanding the health consequences of chronic disruption of circadian rhythms can contribute to improving prevention strategies for shift workers. Chronic circadian disruption in shift work has been linked to a higher risk of stroke. Dysregulated immune responses are also linked to circadian disruption and may be a factor in stroke outcomes in shift workers. In this study, we test the hypotheses that specific schedules of circadian disruption exacerbate inflammatory responses in the brain, causing an increase in infarct size after experimentally induced ischemic stroke. Mice were exposed to 1 of 5 different lighting schedules followed by a 30-min middle cerebral artery occlusion, then reperfusion and 3-day recovery. A history of weekly phase advances resulted in an increased infarct volume versus the control lighting schedule. These effects were shift-direction specific, nonpermanent, and required multiple shifts to occur. In a separate cohort, stereotaxic injections of lipopolysaccharide were given bilaterally after exposure to 1 of 3 different lighting schedules. Ratios of pro- to anti-inflammatory cytokine expression show dysregulated responses after a history of phase advances. We conclude that chronic circadian disruption leads to worsened stroke outcome in a direction- and schedule-specific manner likely because of priming of the inflammatory response in the brain. These pieces of evidence suggest that the health impacts of shift work may be improved by targeting shift work scheduling, inflammatory mediators, or both.


Subject(s)
Circadian Rhythm , Environment , Immunity , Ischemic Stroke/etiology , Photoperiod , Shift Work Schedule/statistics & numerical data , Animals , Brain/immunology , Brain/pathology , Cytokines/immunology , Inflammation/complications , Lighting , Lipopolysaccharides/administration & dosage , Male , Mice , Mice, Inbred C57BL , Work Schedule Tolerance
14.
PLoS One ; 14(5): e0217368, 2019.
Article in English | MEDLINE | ID: mdl-31136603

ABSTRACT

Environmental circadian disruption (ECD), characterized by repeated or long-term disruption in environmental timing cues which require the internal circadian clock to change its phase to resynchronize with the environment, is associated with numerous serious health issues in humans. While animal and isolated cell models exist to study the effects of destabilizing the relationship between the circadian system and the environment, neither approach provides an ideal solution. Here, we developed an in vitro model which incorporates both elements of a reductionist cellular model and disruption of the clock/environment relationship using temperature as an environmental cue, as occurs in vivo. Using this approach, we have demonstrated that some effects of in vivo ECD can be reproduced using only isolated peripheral oscillators. Specifically, we report exaggerated inflammatory responses to endotoxin following repeated environmental circadian disruption in explanted spleens. This effect requires a functional circadian clock but not the master brain clock, the suprachiasmatic nucleus (SCN). Further, we report that this is a result of cumulative, rather than acute, circadian disruption as has been previously observed in vivo. Finally, such effects appear to be tissue specific as it does not occur in lung, which is less sensitive to the temperature cycles employed to induce ECD. Taken together, the present study suggests that this model could be a valuable tool for dissecting the causes and effects of circadian disruption both in isolated components of physiological systems as well as the aggregated interactions of these systems that occur in vivo.


Subject(s)
Circadian Clocks/physiology , Inflammation/physiopathology , Suprachiasmatic Nucleus/physiology , Animals , Circadian Clocks/drug effects , Circadian Rhythm/drug effects , Circadian Rhythm/physiology , Endotoxins/toxicity , Environment , Female , In Vitro Techniques , Interleukin-6/metabolism , Lipopolysaccharides/toxicity , Lung/drug effects , Lung/physiology , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Models, Biological , Organ Specificity , Period Circadian Proteins/genetics , Period Circadian Proteins/physiology , Spleen/drug effects , Spleen/physiology , Suprachiasmatic Nucleus/drug effects , Temperature
15.
Proc Natl Acad Sci U S A ; 115(14): E3296-E3304, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29555746

ABSTRACT

Mammalian/mechanistic target of rapamycin (mTOR) signaling controls cell growth, proliferation, and metabolism in dividing cells. Less is known regarding its function in postmitotic neurons in the adult brain. Here we created a conditional mTOR knockout mouse model to address this question. Using the Cre-LoxP system, the mTOR gene was specifically knocked out in cells expressing Vip (vasoactive intestinal peptide), which represent a major population of interneurons widely distributed in the neocortex, suprachiasmatic nucleus (SCN), olfactory bulb (OB), and other brain regions. Using a combination of biochemical, behavioral, and imaging approaches, we found that mice lacking mTOR in VIP neurons displayed erratic circadian behavior and weakened synchronization among cells in the SCN, the master circadian pacemaker in mammals. Furthermore, we have discovered a critical role for mTOR signaling in mediating olfaction. Odor stimulated mTOR activation in the OB, anterior olfactory nucleus, as well as piriform cortex. Odor-evoked c-Fos responses along the olfactory pathway were abolished in mice lacking mTOR in VIP neurons, which is consistent with reduced olfactory sensitivity in these animals. Together, these results demonstrate that mTOR is a key regulator of SCN circadian clock synchrony and olfaction.


Subject(s)
Circadian Rhythm/physiology , Neurons/physiology , Olfactory Bulb/physiology , Suprachiasmatic Nucleus/physiology , TOR Serine-Threonine Kinases/physiology , Vasoactive Intestinal Peptide/metabolism , Animals , Mice , Mice, Knockout , Neurons/cytology , Olfactory Bulb/cytology , Olfactory Pathways , Signal Transduction , Suprachiasmatic Nucleus/cytology
16.
Neuron ; 93(2): 441-450, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-28065650

ABSTRACT

A circadian clock governs most aspects of mammalian behavior. Although its properties are in part genetically determined, altered light-dark environment can change circadian period length through a mechanism requiring de novo DNA methylation. We show here that this mechanism is mediated not via cell-autonomous clock properties, but rather through altered networking within the suprachiasmatic nuclei (SCN), the circadian "master clock," which is DNA methylated in region-specific manner. DNA methylation is necessary to temporally reorganize circadian phasing among SCN neurons, which in turn changes the period length of the network as a whole. Interruption of neural communication by inhibiting neuronal firing or by physical cutting suppresses both SCN reorganization and period changes. Mathematical modeling suggests, and experiments confirm, that this SCN reorganization depends upon GABAergic signaling. Our results therefore show that basic circadian clock properties are governed by dynamic interactions among SCN neurons, with neuroadaptations in network function driven by the environment.


Subject(s)
Action Potentials/physiology , Circadian Clocks/genetics , DNA Methylation/genetics , Light , Neurons/physiology , Suprachiasmatic Nucleus/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Circadian Clocks/physiology , Circadian Rhythm , Male , Mice , Models, Theoretical , Neurons/cytology , Patch-Clamp Techniques , Period Circadian Proteins/genetics , Suprachiasmatic Nucleus/cytology , Suprachiasmatic Nucleus/physiology , Thalamus/cytology , Thalamus/metabolism
17.
Invest Ophthalmol Vis Sci ; 56(8): 4753-8, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26207312

ABSTRACT

PURPOSE: Previous studies have reported the presence of a circadian rhythm in PERIOD2::LUCIFERASE (PER2::LUC) bioluminescence in mouse photoreceptors, retina, RPE, and cornea. Melatonin (MLT) modulates many physiological functions in the eye and it is believed to be one of the key circadian signals within the eye. The aim of the present study was to investigate the regulation of the PER2::LUC circadian rhythm in mouse cornea and to determine the role played by MLT. METHODS: Corneas were obtained from PER2::LUC mice and cultured to measure bioluminescence rhythmicity in isolated tissue using a Lumicycle or CCD camera. To determine the time-dependent resetting of the corneal circadian clocks in response to MLT or IIK7 (a melatonin type 2 receptor, MT2, agonist) was added to the cultured corneas at different times of the day. We also defined the location of the MT2 receptor within different corneal layers using immunohistochemistry. RESULTS: A long-lasting bioluminescence rhythm was recorded from cultured PER2::LUC cornea and PER2::LUC signal was localized to the corneal epithelium and endothelium. MLT administration in the early night delayed the cornea rhythm, whereas administration of MLT at late night to early morning advanced the cornea rhythm. Treatment with IIK7 mimicked the MLT phase-shifting effect. Consistent with these results, MT2 immunoreactivity was localized to the corneal epithelium and endothelium. CONCLUSIONS: Our work demonstrates that MLT entrains the PER2::LUC bioluminescence rhythm in the cornea. Our data indicate that the cornea may represent a model to study the molecular mechanisms by which MLT affects the circadian clock.


Subject(s)
Circadian Rhythm/physiology , Cornea/drug effects , Luciferases , Melatonin/pharmacology , Animals , Cells, Cultured , Cornea/cytology , Cornea/metabolism , Immunohistochemistry , Luminescent Agents , Mice , Mice, Inbred C57BL
18.
BMC Biol ; 13: 43, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26099272

ABSTRACT

BACKGROUND: Daily rhythms in mammals are programmed by a master clock in the suprachiasmatic nucleus (SCN). The SCN contains two main compartments (shell and core), but the role of each region in system-level coordination remains ill defined. Herein, we use a functional assay to investigate how downstream tissues interpret region-specific outputs by using in vivo exposure to long day photoperiods to temporally dissociate the SCN. We then analyze resulting changes in the rhythms of clocks located throughout the brain and body to examine whether they maintain phase synchrony with the SCN shell or core. RESULTS: Nearly all of the 17 tissues examined in the brain and body maintain phase synchrony with the SCN shell, but not the SCN core, which indicates that downstream oscillators are set by cues controlled specifically by the SCN shell. Interestingly, we also found that SCN dissociation diminished the amplitude of rhythms in core clock gene and protein expression in brain tissues by 50-75 %, which suggests that light-driven changes in the functional organization of the SCN markedly influence the strength of rhythms in downstream tissues. CONCLUSIONS: Overall, our results reveal that body clocks receive time-of-day cues specifically from the SCN shell, which may be an adaptive design principle that serves to maintain system-level phase relationships in a changing environment. Further, we demonstrate that lighting conditions alter the amplitude of the molecular clock in downstream tissues, which uncovers a new form of plasticity that may contribute to seasonal changes in physiology and behavior.


Subject(s)
Brain/physiology , Circadian Clocks , Neurons/cytology , Suprachiasmatic Nucleus/cytology , Animals , Brain/cytology , Circadian Rhythm , Light , Male , Mice, Inbred C57BL , Neurons/physiology , Photoperiod
19.
Proc Biol Sci ; 282(1810)2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26108632

ABSTRACT

Daily rhythms in mammals are controlled by the circadian system, which is a collection of biological clocks regulated by a central pacemaker within the suprachiasmatic nucleus (SCN) of the anterior hypothalamus. Changes in SCN function have pronounced consequences for behaviour and physiology; however, few studies have examined whether individual differences in circadian behaviour reflect changes in SCN function. Here, PERIOD2::LUCIFERASE mice were exposed to a behavioural assay to characterize individual differences in baseline entrainment, rate of re-entrainment and free-running rhythms. SCN slices were then collected for ex vivo bioluminescence imaging to gain insight into how the properties of the SCN clock influence individual differences in behavioural rhythms. First, individual differences in the timing of locomotor activity rhythms were positively correlated with the timing of SCN rhythms. Second, slower adjustment during simulated jetlag was associated with a larger degree of phase heterogeneity among SCN neurons. Collectively, these findings highlight the role of the SCN network in determining individual differences in circadian behaviour. Furthermore, these results reveal novel ways that the network organization of the SCN influences plasticity at the behavioural level, and lend insight into potential interventions designed to modulate the rate of resynchronization during transmeridian travel and shift work.


Subject(s)
Circadian Clocks , Circadian Rhythm , Mice/physiology , Motor Activity , Suprachiasmatic Nucleus/metabolism , Animals , Luminescent Measurements , Male , Phenotype
20.
Brain Behav Immun ; 47: 4-13, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25452149

ABSTRACT

Various aspects of immune response exhibit 24-h variations suggesting that infection susceptibility and treatment efficacy may vary by time of day. Whether these 24-h variations are endogenous or evoked by changes in environmental or behavioral conditions is not known. We assessed the endogenous circadian control and environmental and behavioral influences on ex-vivo lipopolysaccharide stimulation of whole blood in thirteen healthy participants under 48h of baseline conditions with standard sleep-wake schedules and 40-50h of constant environmental and behavioral (constant routine; CR) conditions. Significant 24-h rhythms were observed under baseline conditions in Monocyte Chemotactic Protein, Granulocyte-Macrophage Colony-Stimulating Factor and Interleukin 8 but not Tumor Necrosis Factor alpha whereas significant 24-h rhythms were observed in all four immune factors under CR conditions. The rhythm amplitudes, expressed as a percentage of mean, were comparable between immune factors and across conditions. In contrast, the acrophase time (time of the fitted peak) was different between immune factors, and included daytime and nighttime peaks and changes across behavioral conditions. These results suggest that the endogenous circadian system underpins the temporal organization of immune responses in humans with additional effects of external environmental and behavioral cycles. These findings have implications for understanding the adverse effects of recurrent circadian disruption and sleep curtailment on immune function.


Subject(s)
Chemokine CCL2/blood , Circadian Rhythm/drug effects , Granulocyte-Macrophage Colony-Stimulating Factor/blood , Interleukin-8/blood , Lipopolysaccharides/pharmacology , Tumor Necrosis Factor-alpha/blood , Adult , Circadian Rhythm/physiology , Female , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...