Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 15: 1386728, 2024.
Article in English | MEDLINE | ID: mdl-38784909

ABSTRACT

Acuity assessments are vital for timely interventions and fair resource allocation in critical care settings. Conventional acuity scoring systems heavily depend on subjective patient assessments, leaving room for implicit bias and errors. These assessments are often manual, time-consuming, intermittent, and challenging to interpret accurately, especially for healthcare providers. This risk of bias and error is likely most pronounced in time-constrained and high-stakes environments, such as critical care settings. Furthermore, such scores do not incorporate other information, such as patients' mobility level, which can indicate recovery or deterioration in the intensive care unit (ICU), especially at a granular level. We hypothesized that wearable sensor data could assist in assessing patient acuity granularly, especially in conjunction with clinical data from electronic health records (EHR). In this prospective study, we evaluated the impact of integrating mobility data collected from wrist-worn accelerometers with clinical data obtained from EHR for estimating acuity. Accelerometry data were collected from 87 patients wearing accelerometers on their wrists in an academic hospital setting. The data was evaluated using five deep neural network models: VGG, ResNet, MobileNet, SqueezeNet, and a custom Transformer network. These models outperformed a rule-based clinical score (Sequential Organ Failure Assessment, SOFA) used as a baseline when predicting acuity state (for ground truth we labeled as unstable patients if they needed life-supporting therapies, and as stable otherwise), particularly regarding the precision, sensitivity, and F1 score. The results demonstrate that integrating accelerometer data with demographics and clinical variables improves predictive performance compared to traditional scoring systems in healthcare. Deep learning models consistently outperformed the SOFA score baseline across various scenarios, showing notable enhancements in metrics such as the area under the receiver operating characteristic (ROC) Curve (AUC), precision, sensitivity, specificity, and F1 score. The most comprehensive scenario, leveraging accelerometer, demographics, and clinical data, achieved the highest AUC of 0.73, compared to 0.53 when using SOFA score as the baseline, with significant improvements in precision (0.80 vs. 0.23), specificity (0.79 vs. 0.73), and F1 score (0.77 vs. 0.66). This study demonstrates a novel approach beyond the simplistic differentiation between stable and unstable conditions. By incorporating mobility and comprehensive patient information, we distinguish between these states in critically ill patients and capture essential nuances in physiology and functional status. Unlike rudimentary definitions, such as equating low blood pressure with instability, our methodology delves deeper, offering a more holistic understanding and potentially valuable insights for acuity assessment.

2.
J Racial Ethn Health Disparities ; 10(6): 3140-3149, 2023 12.
Article in English | MEDLINE | ID: mdl-36536164

ABSTRACT

OBJECTIVE: Individuals from Black and Hispanic backgrounds represent a minority of the overall US population, yet are the populations most affected by the disease of obesity and its comorbid conditions. Black and Hispanic individuals remain underrepresented among participants in obesity clinical trials, despite the mandate by the National Institutes of Health (NIH) Revitalization Act of 1993. This systematic review evaluates the racial, ethnic, and gender diversity of clinical trials focused on obesity at a national level. METHODS: Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a systematic review of clinicaltrials.gov, PubMed, Cochrane Central, and Web of Science was undertaken to locate phase 3 and phase 4 clinical trials on the topic of obesity that met associated inclusion/exclusion criteria. Ultimately, 18 studies were included for review. RESULTS: White non-Hispanic individuals represented the majority of clinical trial participants, as did females. No study classified participants by gender identity. Reporting of race/ethnicity was not uniform, with noted variability among racial/ethnic subgroups. CONCLUSIONS: Our findings suggest that disparities remain in the diverse racial, ethnic, and gender representation of participants engaged in clinical trials on obesity relative to the prevalence of obesity in underrepresented populations. Commitment to inclusive and intentional recruiting practices is needed to increase the representation of underrepresented groups, thus increasing the generalizability of future research.


Subject(s)
Ethnicity , Gender Identity , Humans , Male , Female , Obesity , Diet , White
3.
IEEE Int Conf Bioinform Biomed Workshops ; 2023: 2207-2212, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38463539

ABSTRACT

Quantifying pain in patients admitted to intensive care units (ICUs) is challenging due to the increased prevalence of communication barriers in this patient population. Previous research has posited a positive correlation between pain and physical activity in critically ill patients. In this study, we advance this hypothesis by building machine learning classifiers to examine the ability of accelerometer data collected from daily wearables to predict self-reported pain levels experienced by patients in the ICU. We trained multiple Machine Learning (ML) models, including Logistic Regression, CatBoost, and XG-Boost, on statistical features extracted from the accelerometer data combined with previous pain measurements and patient demographics. Following previous studies that showed a change in pain sensitivity in ICU patients at night, we performed the task of pain classification separately for daytime and nighttime pain reports. In the pain versus no-pain classification setting, logistic regression gave the best classifier in daytime (AUC: 0.72, F1-score: 0.72), and CatBoost gave the best classifier at nighttime (AUC: 0.82, F1-score: 0.82). Performance of logistic regression dropped to 0.61 AUC, 0.62 F1-score (mild vs. moderate pain, nighttime), and CatBoost's performance was similarly affected with 0.61 AUC, 0.60 F1-score (moderate vs. severe pain, daytime). The inclusion of analgesic information benefited the classification between moderate and severe pain. SHAP analysis was conducted to find the most significant features in each setting. It assigned the highest importance to accelerometer-related features on all evaluated settings but also showed the contribution of the other features such as age and medications in specific contexts. In conclusion, accelerometer data combined with patient demographics and previous pain measurements can be used to screen painful from painless episodes in the ICU and can be combined with analgesic information to provide moderate classification between painful episodes of different severities.

4.
Aust N Z J Public Health ; 40(4): 349-55, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27197797

ABSTRACT

OBJECTIVE: Since 2012, all community care recipients in New Zealand have undergone a standardised needs assessment using the Home Care International Residential Assessment Instrument (interRAI-HC). This study describes the national interRAI-HC population, assesses its data quality and evaluates its ability to be matched. METHODS: The interRAI-HC instrument elicits information on 236 questions over 20 domains; conducted by 1,800+ trained health professionals. Assessments between 1 July 2012 and 30 June 2014 are reported here. Stratified by age, demographic characteristics were compared to 2013 Census estimates and selected health profiles described. Deterministic matching to the Ministry of Health's mortality database was undertaken. RESULTS: Overall, 51,232 interRAI-HC assessments were conducted, with 47,714 (93.1%) research consent from 47,236 unique individuals; including 2,675 Maori and 1,609 Pacific people. Apart from height and weight, data validity and reliability were high. A 99.8% match to mortality data was achieved. CONCLUSIONS: The interRAI-HC research database is large and ethnically diverse, with high consent rates. Its generally good psychometric properties and ability to be matched enhances its research utility. IMPLICATIONS: This national database provides a remarkable opportunity for researchers to better understand older persons' health and health care, so as to better sustain older people in their own homes.


Subject(s)
Databases, Factual/statistics & numerical data , Geriatric Assessment/methods , Geriatric Assessment/statistics & numerical data , Residence Characteristics , Activities of Daily Living , Aged , Aged, 80 and over , Cross-Sectional Studies , Female , Humans , Male , Needs Assessment , New Zealand , Psychometrics , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...