Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38067614

ABSTRACT

Environmentally acceptable and renewably sourced flame retardants are in demand. Recent studies have shown that the incorporation of the biopolymer lignin into a polymer can improve its ability to form a char layer upon heating to a high temperature. Char layer formation is a central component of flame-retardant activity. The covalent modification of lignin is an established technique that is being applied to the development of potential flame retardants. In this study, four novel modified lignins were prepared, and their char-forming abilities were assessed using thermogravimetric analysis. The lignin was obtained from date palm wood using a butanosolv pretreatment. The removal of the majority of the ester groups from this heavily acylated lignin was achieved via alkaline hydrolysis. The subsequent modification of the lignin involved the incorporation of an azide functional group and copper-catalysed azide-alkyne cycloaddition reactions. These reactions enabled novel organophosphorus heterocycles to be linked to the lignin. Our preliminary results suggest that the modified lignins had improved char-forming activity compared to the controls. 31P and HSQC NMR and small-molecule X-ray crystallography were used to analyse the prepared compounds and lignins.

2.
ACS Sustain Chem Eng ; 11(39): 14323-14333, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37799817

ABSTRACT

Cocoa pod husks (CPHs) represent an underutilized component of the chocolate manufacturing process. While industry's current focus is understandably on the cocoa beans, the husks make up around 75 wt % of the fruit. Previous studies have been dominated by the carbohydrate polymers present in CPHs, but this work highlights the presence of the biopolymer lignin in this biomass. An optimized organosolv lignin isolation protocol was developed, delivering significant practical improvements. This new protocol may also prove to be useful for agricultural waste-derived biomasses in general. NMR analysis of the high quality lignin led to an improved structural understanding, with evidence provided to support deacetylation of the lignin occurring during the optimized pretreatment. Chemical transformation, using a tosylation, azidation, copper-catalyzed click protocol, delivered a modified lignin oligomer with an organophosphorus motif attached. Thermogravimetric analysis was used to demonstrate the oligomer's potential as a flame-retardant. Preliminary analysis of the other product streams isolated from the CPHs was also carried out.

SELECTION OF CITATIONS
SEARCH DETAIL
...