Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 25(6): 3718-27, 2009 Apr 09.
Article in English | MEDLINE | ID: mdl-19275183

ABSTRACT

Ultra-high-molecular-weight polyethylene (UHMWPE) has a long history of use in medical devices, primarily for articulating surfaces due to its inherent low surface energy which limits tissue integration. To widen the applications of UHMWPE, the surface energy can be increased. The increase in surface energy would improve the adsorption of proteins and attachment of cells to allow tissue integration, thereby allowing UHMWPE to potentially be used for a wider range of implants. The attachment and function of human primary osteoblast-like (HOB) cells to surfaces of UHMWPE with various levels of incorporated surface oxygen have been investigated. The surface modification of the UHMWPE was produced by exposure to a UV/ozone treatment. The resulting surface chemistry was studied using X-ray photoelectron spectroscopy (XPS), and the topography and surface structure were probed by atomic force microscopy (AFM) and scanning electron microscopy (SEM), which showed an increase in surface oxygen from 11 to 26 atom % with no significant change to the surface topography. The absolute root mean square roughness of both untreated and UV/ozone-treated surfaces was within 350-450 nm, and the water contact angles decreased with increasing oxygen incorporation, i.e., showing an increase in surface hydrophilicity. Cell attachment and functionality were assessed over a 21 day period for each cell-surface combination studied; these were performed using SEM and the alamarBlue assay to study cell attachment and proliferation and energy-dispersive X-ray (EDX) analysis to confirm extracellular mineral deposits, and total protein assay to examine the intra- and extracellular protein expressed by the cells. HOB cells cultured for 21 days on the modified UHMWPE surfaces with 19 and 26 atom % oxygen incorporated showed significantly higher cell densities compared to cells cultured on tissue culture polystyrene (TCPS) from day 3 onward. This indicated that the cells attached and proliferated more readily on the UV/ozone-treated UHMWPE surfaces than on untreated UHMWPE and TCPS surfaces. Contact guidance of the cells was observed on the UHMWPE surfaces by both SEM and AFM. Scanning electron micrographs showed that the cells were confluent on the modified UHMWPE surfaces by day 10, which led to visible layering of the cells by day 21, an indicator of nodule formation. In vitro mineralization of the extracellular matrix expressed by the HOB cells on the modified UHMWPE surfaces was confirmed by SEM and EDX analysis; spherulite structures were observed near cell protrusions by day 21. EDX analysis confirmed the spherulites to contain calcium and phosphorus, the major constituents in calcium phosphate apatite, the mineral phase of bone. Overall cell attachment, functionality, and mineralization were found to be enhanced on the UV/ozone-modified UHMWPE surfaces, demonstrating the importance of optimizing the surface chemistry for primary HOB cells.


Subject(s)
Cell Culture Techniques/instrumentation , Osteoblasts/cytology , Polyethylene/chemistry , Cell Adhesion , Cell Culture Techniques/methods , Cell Proliferation , Cells, Cultured , Humans , Microscopy, Atomic Force/methods , Microscopy, Electron, Scanning/methods , Oxygen/chemistry , Ozone , Polyethylenes/chemistry , Software , Ultraviolet Rays , X-Rays
2.
Phys Chem Chem Phys ; 8(21): 2525-30, 2006 Jun 07.
Article in English | MEDLINE | ID: mdl-16721437

ABSTRACT

A new, atomic force microscopy (AFM) based experimental setup for the continuous acquisition of friction force data as a function of humidity has been developed. The current model of interactions between wet contacts under the influence of capillary effects, has been amended to include a vertical component due to the disjoining pressure and takes into account the influence of liquid films adsorbed on the surface. This is a 'switching' model, i.e. the contact between nanometer-sized sphere and a flat surface can exist in two distinct states due to capillary bridge formation/destruction as the humidity is varied. The model has been qualitatively verified on samples of differing wettability produced by UV-ozone treatment of polystyrene (PS). Results of AFM analysis of the friction vs. vapor pressure curves collected from the surface are presented. Correlation between important surface properties such as wettability, adsorption, and contact angle and friction force under varying humidity were found and discussed.


Subject(s)
Microscopy, Atomic Force/methods , Ozone , Particle Size , Pressure , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...