Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Urol ; 182(4): 1371-7, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19683262

ABSTRACT

PURPOSE: We ascertained the feasibility and safety of image guided targeted photothermal focal therapy for localized prostate cancer. MATERIALS AND METHODS: Twelve patients with biopsy proven low risk prostate cancer underwent interstitial photothermal ablation of the cancer. The area of interest was confirmed and targeted using magnetic resonance imaging. Three-dimensional ultrasound was used to guide a laser to the magnetic resonance to ultrasound fused area of interest. Target ablation was monitored using thermal sensors and real-time Definity contrast enhanced ultrasound. Followup was performed with a combination of magnetic resonance imaging and prostate biopsy. Validated quality of life questionnaires were used to assess the effect on voiding symptoms and erectile function, and adverse events were solicited and recorded. RESULTS: Interstitial photothermal focal therapy was technically feasible to perform. Of the patients 75% were discharged home free from catheter the same day with the remainder discharged home the following day. The treatment created an identifiable hypovascular defect which coincided with the targeted prostatic lesion. There were no perioperative complications and minimal morbidity. All patients who were potent before the procedure maintained potency after the procedure. Continence levels were not compromised. Based on multicore total prostate biopsy at 6 months 67% of patients were free of tumor in the targeted area and 50% were free of disease. CONCLUSIONS: Image guided focal photothermal ablation of low risk and low volume prostate cancer is feasible. Early clinical, histological and magnetic resonance imaging responses suggest that the targeted region can be ablated with minimal adverse effects. It may represent an alternate treatment approach to observation or delayed standard therapy in carefully selected patients. Further trials are required to demonstrate the effectiveness of this treatment concept.


Subject(s)
Laser Therapy , Prostatic Neoplasms/surgery , Feasibility Studies , Humans , Male , Middle Aged
2.
Int J Hyperthermia ; 20(5): 539-55, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15277026

ABSTRACT

Thermal conduction and convection were examined as sources of error in thermographically measured SAR patterns of an interstitial microwave hyperthermia applicator. Measurements were performed in a layered block of muscle-equivalent phantom material using an infrared thermographic technique with varying heating duration. There was a 52.7% reduction in maximum SAR and 75.5% increase in 50% iso-SAR contour area for a 60-s heating duration relative to a 10-s heating duration. A finite element model of heat transfer in an homogeneous medium was used to model conductive and convective heat transfer during the thermographic measurement. Thermal conduction artefacts were found to significantly distort thermographically measured SAR patterns. Convective cooling, which occurs when phantom layers are exposed for thermal image acquisition, was found to significantly affect the magnitude, but not the spatial distribution, of thermographically measured SAR patterns. Results from this investigation suggest that the thermal diffusion artefacts can be minimized if the duration of the applied power pulse is restricted to 10 s or less.


Subject(s)
Hyperthermia, Induced/statistics & numerical data , Hot Temperature , Humans , Models, Biological , Neoplasms/therapy , Phantoms, Imaging , Thermography/statistics & numerical data
3.
Int J Hyperthermia ; 20(7): 757-68, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15675670

ABSTRACT

Interstitial microwave thermal therapy may be an effective alternative to surgery for the treatment of some solid tumours. Arrays of helical antennae can produce complex heating patterns which when combined with active cooling of normal tissue structures can provide conformal heating for thermal coagulation of tumours. The development of a clinical protocol involving phantom and animal model studies, treatment planning, tissue property measurement and methods for on-line treatment monitoring is reviewed. The technology developed has been applied to the problem of recurrent prostate cancer following failed radiation treatment where available curative options are associated with high normal tissue morbidity. The purpose was to develop a treatment option for this group of patients with a very low side-effect profile that would not preclude further treatment if the disease progressed. Results of a Phase I/II trial demonstrate safety, promising efficacy and a low complication rate. As the technology for delivering this treatment matures, larger multi-institutional trials should be considered.


Subject(s)
Hyperthermia, Induced/methods , Microwaves/therapeutic use , Neoplasm Recurrence, Local/therapy , Prostatic Neoplasms/therapy , Humans , Male
4.
Int J Hyperthermia ; 19(5): 551-62, 2003.
Article in English | MEDLINE | ID: mdl-12944169

ABSTRACT

The purpose of this work was to measure the thermal conductivity of polyacrylamide (PAG) and compare it with previously reported values. Polyacrylamide phantoms play an important role in the development of hyperthermia and high-temperature thermal therapies based on electromagnetic (EM) radiation by providing a material that mimics the electrical and thermal properties of human tissue. The thermal properties of PAG have, up until now, not been thoroughly investigated and at least two significantly different values have been published. In this study, the thermal conductivity of polyacrylamide was measured from the steady state temperature drop across samples exposed to a known heat flux. The measured conductivity was 0.56 +/- 0.047 W m(-1) degrees C(-1). To validate the correct set of thermal properties for polyacrylamide, simple heating experiments were performed in a PAG phantom and then simulated using a finite element numerical model that incorporated the measured thermal conductivity along with literature values for specific heat and density. Temperature predictions from the model agreed with average temperatures measured in the phantom to within 1 SD of the measured temperatures.


Subject(s)
Acrylic Resins , Hyperthermia, Induced , Phantoms, Imaging , Thermal Conductivity , Hot Temperature , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...