Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 4246, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38379026

ABSTRACT

High levels of HDL-C are correlated with a decreased risk of cardiovascular disease. HDL-C levels are modulated in part by the secreted phospholipase, endothelial lipase (EL), which hydrolyzes the phospholipids of HDL and decreases circulating HDL-C concentrations. A 584C/T polymorphism in LIPG, the gene which encodes EL, was first identified in individuals with increased HDL levels. This polymorphism results in a T111I point mutation the EL protein. The association between this variant, HDL levels, and the risk of coronary artery disease (CAD) in humans has been extensively studied, but the findings have been inconsistent. In this study, we took a biochemical approach, investigating how the T111I variant affected EL activity, structure, and stability. Moreover, we tested whether the T111I variant altered the inhibition of phospholipase activity by angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4), two known EL inhibitors. We found that neither the stability nor enzymatic activity of EL was altered by the T111I variant. Moreover, we found no difference between wild-type and T111I EL in their ability to be inhibited by ANGPTL proteins. These data suggest that any effect this variant may have on HDL-C levels or cardiovascular disease are not mediated through alterations in these functions.


Subject(s)
Cardiovascular Diseases , Humans , Angiopoietin-Like Protein 3 , Angiopoietin-like Proteins/genetics , Angiopoietins , Cholesterol, HDL/metabolism , Lipase/genetics , Lipase/metabolism , Phospholipases
2.
bioRxiv ; 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37693454

ABSTRACT

High levels of HDL-C are correlated with a decreased risk of cardiovascular disease. HDL-C levels are modulated in part by the secreted phospholipase, endothelial lipase (EL), which hydrolyzes the phospholipids of HDL and decreases circulating HDL-C concentrations. A 584C/T polymorphism in LIPG, the gene which encodes EL, was first identified in individuals with increased HDL levels. This polymorphism results in a T111I point mutation the EL protein. The association between this variant, HDL levels, and the risk of coronary artery disease (CAD) in humans has been extensively studied, but the findings have been inconsistent. In this study, we took a biochemical approach, investigating how the T111I variant affected EL activity, structure, and stability. Moreover, we tested whether the T111I variant altered the inhibition of phospholipase activity by angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4), two known EL inhibitors. We found that neither the stability nor enzymatic activity of EL was altered by the T111I variant. Moreover, we found no difference between wild-type and T111I EL in their ability to be inhibited by ANGPTL proteins. These data suggest that any effect this variant may have on HDL-C levels or cardiovascular disease are not mediated through alterations in these functions.

3.
Biochim Biophys Acta Gen Subj ; 1867(5): 130321, 2023 05.
Article in English | MEDLINE | ID: mdl-36870547

ABSTRACT

BACKGROUND: Glutathione (GSH) is the most abundant, small biothiol antioxidant. GSH redox state (Eh) supports developmental processes, yet with disrupted GSH Eh, poor developmental outcomes may occur. The role of subcellular, compartmentalized redox environments in the context of redox regulation of differentiation is not well understood. Here, using the P19 neurogenesis model of cellular differentiation, kinetics of subcellular H2O2 availability and GSH Eh were evaluated following oxidant exposure. METHODS: Stably transfected P19 cell lines expressing H2O2 availability or GSH Eh sensors, Orp1-roGFP or Grx1-roGFP, respectively, targeted to the cytosol, mitochondria, or nucleus were used. Dynamic, compartmentalized changes in H2O2 availability and GSH Eh were measured via spectrophotometric and confocal microscopy over 120 min following treatment with H2O2 (100 µM) in both differentiated and undifferentiated cells. RESULTS: Generally, treated undifferentiated cells showed a greater degree and duration of both H2O2 availability and GSH Eh disruption than differentiated neurons. In treated undifferentiated cells, H2O2 availability was similar in all compartments. Interestingly, in treated undifferentiated cells, mitochondrial GSH Eh was most affected in both the initial oxidation and the rebound kinetics compared to other compartments. Pretreatment with an Nrf2 inducer prevented H2O2-induced effects in all compartments of undifferentiated cells. CONCLUSIONS: Disruption of redox-sensitive developmental pathways is likely stage specific, where cells that are less differentiated and/or are actively differentiating are most affected. GENERAL SIGNIFICANCE: Undifferentiated cells are more susceptible to oxidant-induced redox dysregulation but are protected by chemicals that induce Nrf2. This may preserve developmental programs and diminish the potential for poor developmental outcomes.


Subject(s)
Hydrogen Peroxide , NF-E2-Related Factor 2 , Hydrogen Peroxide/metabolism , NF-E2-Related Factor 2/metabolism , Glutathione/metabolism , Oxidation-Reduction , Oxidants , Cell Differentiation
4.
Sci Signal ; 16(768): eadd6702, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36649378

ABSTRACT

The endoplasmic reticulum (ER)-tethered, liver-enriched stress sensor CREBH is processed in response to increased energy demands or hepatic stress to release an amino-terminal fragment that functions as a transcription factor for hepatic genes encoding lipid and glucose metabolic factors. Here, we discovered that the carboxyl-terminal fragment of CREBH (CREBH-C) derived from membrane-bound, full-length CREBH was secreted as a hepatokine in response to fasting or hepatic stress. Phosphorylation of CREBH-C mediated by the kinase CaMKII was required for efficient secretion of CREBH-C through exocytosis. Lipoprotein lipase (LPL) mediates the lipolysis of circulating triglycerides for tissue uptake and is inhibited by a complex consisting of angiopoietin-like (ANGPTL) 3 and ANGPTL8. Secreted CREBH-C blocked the formation of ANGPTL3-ANGPTL8 complexes, leading to increased LPL activity in plasma and metabolic tissues in mice. CREBH-C administration promoted plasma triglyceride clearance and partitioning into peripheral tissues and mitigated hypertriglyceridemia and hepatic steatosis in mice fed a high-fat diet. Individuals with obesity had higher circulating amounts of CREBH-C than control individuals, and human CREBH loss-of-function variants were associated with dysregulated plasma triglycerides. These results identify a stress-induced, secreted protein fragment derived from CREBH that functions as a hepatokine to stimulate LPL activity and triglyceride homeostasis.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Lipoprotein Lipase , Peptide Hormones , Animals , Humans , Mice , Angiopoietin-Like Protein 3 , Angiopoietin-Like Protein 8 , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Lipid Metabolism/genetics , Lipoprotein Lipase/metabolism , Liver/metabolism , Peptide Hormones/metabolism , Triglycerides , Cyclic AMP Response Element-Binding Protein/metabolism
5.
Biol Open ; 12(1)2023 01 15.
Article in English | MEDLINE | ID: mdl-36537579

ABSTRACT

The mammalian superior colliculus and its non-mammalian homolog, the optic tectum (OT), are midbrain structures that integrate multimodal sensory inputs and guide non-voluntary movements in response to prevalent stimuli. Recent studies have implicated this structure as a possible site affected in autism spectrum disorder (ASD). Interestingly, fetal exposure to valproic acid (VPA) has also been associated with an increased risk of ASD in humans and animal models. Therefore, we took the approach of determining the effects of VPA treatment on zebrafish OT development as a first step in identifying the mechanisms that allow its formation. We describe normal OT development during the first 5 days of development and show that in VPA-treated embryos, neuronal specification and neuropil formation was delayed. VPA treatment was most detrimental during the first 3 days of development and did not appear to be linked to oxidative stress. In conclusion, our work provides a foundation for research into mechanisms driving OT development, as well as the relationship between the OT, VPA, and ASD. This article has an associated First Person interview with one of the co-first authors of the paper.


Subject(s)
Autism Spectrum Disorder , Valproic Acid , Humans , Animals , Valproic Acid/adverse effects , Zebrafish , Superior Colliculi , Neurogenesis , Mammals
6.
J Lipid Res ; 62: 100112, 2021.
Article in English | MEDLINE | ID: mdl-34461133

ABSTRACT

High plasma triglyceride (TG) levels and low HDL-C levels are risk factors for atherosclerosis and cardiovascular disease. Both plasma TG and HDL-C levels are regulated in part by the circulating inhibitor, angiopoietin-like 3 (ANGPTL3). ANGPTL3 inhibits the phospholipase, endothelial lipase (EL), which hydrolyzes the phospholipids of HDL, thus decreasing plasma HDL levels. ANGPTL3 also inhibits LPL, the lipase primarily responsible for the clearance of TGs from the circulation. Previous studies have shown that ANGPTL3 requires complex formation with the related ANGPTL protein, angiopoietin-like 8 (ANGPTL8), to efficiently inhibit LPL, but the role of ANGPTL8 in EL inhibition is not known. In this study, we characterized inhibition and binding of EL by ANGPTL3 and investigated the role of ANGPTL8 in EL inhibition. We found that inhibition of EL by ANGPTL3 was dose dependent and temperature dependent. Interestingly, this inhibition was diminished when EL was bound to endothelial cells or in the presence of heparin. Unlike previous findings with LPL, we found that ANGPTL8 did not significantly alter the binding or the inhibition of EL by ANGPTL3. In addition, we found that a common ANGPTL8 variant, which encodes an R59W mutation, altered the ability of ANGPTL3 to bind and inhibit LPL but not EL. Together, our data indicate that ANGPTL8 is not necessary for EL inhibition. We conclude that ANGPTL8 is specific for the regulation of TG-rich lipoproteins through the LPL pathway and that therapeutically targeting ANGPTL8 for the treatment of hypertriglyceridemia or cardiovascular disease may have different outcomes than targeting ANGPTL3.


Subject(s)
Angiopoietin-Like Protein 3/metabolism , Angiopoietin-Like Protein 8/metabolism , Endothelial Cells/enzymology , Lipase/metabolism , Animals , Cell Line , Humans , Mice , Rats
7.
Am J Physiol Endocrinol Metab ; 321(4): E493-E508, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34338039

ABSTRACT

Triglyceride-rich lipoproteins deliver fatty acids to tissues for oxidation and for storage. Release of fatty acids from circulating lipoprotein triglycerides is carried out by lipoprotein lipase (LPL), thus LPL serves as a critical gatekeeper of fatty acid uptake into tissues. LPL activity is regulated by a number of extracellular proteins including three members of the angiopoietin-like family of proteins. In this review, we discuss our current understanding of how, where, and when ANGPTL3, ANGPTL4, and ANGPTL8 regulate lipoprotein lipase activity, with a particular emphasis on how these proteins interact with each other to coordinate triglyceride metabolism and fat partitioning.


Subject(s)
Angiopoietin-Like Protein 4/metabolism , Angiopoietin-like Proteins/metabolism , Lipid Metabolism , Lipoproteins/metabolism , Peptide Hormones/metabolism , Triglycerides/metabolism , Angiopoietin-Like Protein 3 , Angiopoietin-Like Protein 8 , Humans
8.
Am J Physiol Endocrinol Metab ; 321(4): E464-E478, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34396783

ABSTRACT

Obesity is associated with dyslipidemia, ectopic lipid deposition, and insulin resistance. In mice, the global or adipose-specific loss of function of the protein angiopoietin-like 4 (ANGPTL4) leads to decreased plasma triglyceride levels, enhanced adipose triglyceride uptake, and protection from high-fat diet (HFD)-induced glucose intolerance. ANGPTL4 is also expressed highly in the liver, but the role of liver-derived ANGPTL4 is unclear. The goal of this study was to determine the contribution of hepatocyte ANGPTL4 to triglyceride and glucose homeostasis in mice during a high-fat diet challenge. We generated hepatocyte-specific ANGPTL4 deficient (Angptl4LivKO) mice, fed them a 60% kcal/fat diet (HFD) for 6 mo and assessed triglyceride, liver, and glucose metabolic phenotypes. We also explored the effects of prolonged fasting on Angptl4LivKO mice. The loss of hepatocyte-derived ANGPTL4 led to no major changes in triglyceride partitioning or lipoprotein lipase activity compared with control mice. Interestingly, although there was no difference in fasting plasma triglyceride levels after a 6 h fast, after an 18-h fast, normal chow diet-fed Angptl4LivKO mice had lower triglyceride levels than control mice. On a HFD, Angptl4LivKO mice initially showed no difference in glucose tolerance and insulin sensitivity, but improved glucose tolerance emerged in these mice after 6 mo on HFD. Our data suggest that hepatocyte ANGPTL4 does not directly regulate triglyceride partitioning, but that loss of liver-derived ANGPTL4 may be protective from HFD-induced glucose intolerance and influence plasma triglyceride (TG) metabolism during prolonged fasting.NEW & NOTEWORTHY1) Angiopoietin-like 4 deficiency in hepatocytes (Angptl4LivKO) does not improve triglyceride phenotypes during high-fat feeding. 2) Angptl4LivKO mice have improved glucose tolerance after chronic high-fat diet. 3) Angptl4LivKO mice have decreased fasting plasma triglyceride levels after an 18-h fast, but not after a 6-h fast.


Subject(s)
Angiopoietin-Like Protein 4/physiology , Diet, High-Fat , Glucose Intolerance/prevention & control , Insulin Resistance , Liver/metabolism , Triglycerides/blood , Animals , Fasting , Female , Glucose Intolerance/etiology , Glucose Intolerance/metabolism , Glucose Intolerance/pathology , Lipid Metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
9.
Sci Rep ; 11(1): 7873, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846453

ABSTRACT

Elevated plasma triglyceride levels are associated with metabolic disease. Angiopoietin-like protein 4 (ANGPTL4) regulates plasma triglyceride levels by inhibiting lipoprotein lipase (LPL). Our aim was to investigate the role of adipocyte-specific deficiency of ANGPTL4 in mice during high fat diet feeding. Adipocyte-specific ANGPTL4 deficient mice were fed a high fat diet (60% kCal from fat) for either 12 weeks or 6 months. We performed plasma metabolic measurements, triglyceride clearance and uptake assays, LPL activity assays, and assessed glucose homeostasis. Mice lacking adipocyte ANGPTL4 recapitulated the triglyceride phenotypes of whole-body ANGPTL4 deficiency, including increased adipose LPL activity, lower plasma triglyceride levels, and increased uptake of triglycerides into adipose tissue. When fed a high fat diet (HFD), these mice continued to display enhanced adipose LPL activity and initially had improved glucose and insulin sensitivity. However, after 6 months on HFD, the improvements in glucose homeostasis were largely lost. Moreover, despite higher adipose LPL activity levels, mice lacking adipocyte ANGPTL4 no longer had increased triglyceride uptake into adipose compared to littermate controls after chronic high-fat feeding. These observations suggest that after chronic high-fat feeding LPL is no longer rate-limiting for triglyceride delivery to adipocytes. We conclude that while adipocyte-derived ANGPTL4 is an important regulator of plasma triglyceride levels and triglyceride partitioning under normal diet conditions, its role is diminished after chronic high-fat feeding.


Subject(s)
Adipose Tissue/metabolism , Angiopoietin-Like Protein 4/physiology , Diet, High-Fat/adverse effects , Glucose/metabolism , Triglycerides/blood , Animals , Female , Male , Mice , Mice, Inbred ICR , Mice, Knockout
10.
J Lipid Res ; 61(8): 1161-1167, 2020 08.
Article in English | MEDLINE | ID: mdl-32586846

ABSTRACT

The risk for metabolic disease, including metabolic syndrome, insulin resistance, and diabetes, increases with age. Altered plasma TG metabolism and changes in fatty acid partitioning are also major contributors to metabolic disease. Plasma TG metabolism itself is altered by age in humans and rodents. As discussed in this review, the age-induced changes in human TG metabolism include increased plasma TG levels, reduced postprandial plasma TG clearance rates, reduced postheparin LPL activity, decreased adipose tissue lipolysis, and elevated ectopic fat deposition, all of which could potentially contribute to age-associated metabolic diseases. Similar observations have been made in aged rats. We highlight the limitations of currently available data and propose that mechanistic studies are needed to understand the extent to which age-induced alterations in TG metabolism contribute to metabolic disease. Such mechanistic insights could aid in therapeutic strategies for preventing or managing metabolic disease in older individuals.


Subject(s)
Aging/blood , Aging/metabolism , Triglycerides/blood , Triglycerides/metabolism , Adipose Tissue/metabolism , Animals , Humans
11.
J Lipid Res ; 61(4): 546-559, 2020 04.
Article in English | MEDLINE | ID: mdl-32029511

ABSTRACT

The hydrolysis of triglycerides in triglyceride-rich lipoproteins by LPL is critical for the delivery of triglyceride-derived fatty acids to tissues, including heart, skeletal muscle, and adipose tissues. Physiologically active LPL is normally bound to the endothelial cell protein glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1), which transports LPL across endothelial cells, anchors LPL to the vascular wall, and stabilizes LPL activity. Disruption of LPL-GPIHBP1 binding significantly alters triglyceride metabolism and lipid partitioning. In this study, we modified the NanoLuc® Binary Technology split-luciferase system to develop a novel assay that monitors the binding of LPL to GPIHBP1 on endothelial cells in real time. We validated the specificity and sensitivity of the assay using endothelial lipase and a mutant version of LPL and found that this assay reliably and specifically detected the interaction between LPL and GPIHBP1. We then interrogated various endogenous and exogenous inhibitors of LPL-mediated lipolysis for their ability to disrupt the binding of LPL to GPIHBP1. We found that angiopoietin-like (ANGPTL)4 and ANGPTL3-ANGPTL8 complexes disrupted the interactions of LPL and GPIHBP1, whereas the exogenous LPL blockers we tested (tyloxapol, poloxamer-407, and tetrahydrolipstatin) did not. We also found that chylomicrons could dissociate LPL from GPIHBP1 and found evidence that this dissociation was mediated in part by the fatty acids produced by lipolysis. These results demonstrate the ability of this assay to monitor LPL-GPIHBP1 binding and to probe how various agents influence this important complex.


Subject(s)
Biological Assay/methods , Lipoprotein Lipase/metabolism , Receptors, Lipoprotein/metabolism , Animals , Cell Line , Chylomicrons/pharmacology , Endothelial Cells/metabolism , Fatty Acids/pharmacology , Orlistat/pharmacology , Protein Binding/drug effects , Rats
12.
Diabetes ; 69(6): 1100-1109, 2020 06.
Article in English | MEDLINE | ID: mdl-32051149

ABSTRACT

To ensure fetal lipid supply, maternal blood triglyceride (TG) concentrations are robustly elevated during pregnancy. Interestingly, a lower increase in maternal blood TG concentrations has been observed in some obese mothers. We have shown that high-fat (HF) feeding during pregnancy significantly reduces maternal blood TG levels. Therefore, we performed this study to investigate if and how obesity alters maternal blood TG levels. Maternal obesity was established by prepregnant HF (ppHF) feeding, which avoided the dietary effect during pregnancy. We found not only that maternal blood TG concentrations in ppHF dams were remarkably lower than in control dams but also that the TG peak occurred earlier during gestation. Hepatic TG production and intestinal TG absorption were unchanged in ppHF dams, but systemic lipoprotein lipase (LPL) activity was increased, suggesting that increased blood TG clearance contributes to the decreased blood TG concentrations in ppHF dams. Although significantly higher levels of UCP1 protein were observed in interscapular brown adipose tissue (iBAT) of ppHF dams, Ucp1 gene deletion did not restore blood TG concentrations in ppHF dams. Expression of the angiopoietin-like protein 4 (ANGPTL4), a potent endogenous LPL inhibitor, was significantly increased during pregnancy. However, the pregnancy-induced elevation of blood TG was almost abolished in Angptl4 -/- dams. Compared with control dams, Angptl4 mRNA levels were significantly lower in iBAT, gonadal white adipose tissue, and livers of ppHF dams. Importantly, ectopic overexpression of ANGPTL4 restored maternal blood TG concentrations in ppHF dams. Together, these results indicate that ANGPTL4 plays a vital role in increasing maternal blood TG concentrations during pregnancy. Obesity impairs the rise of maternal blood TG concentrations by reducing ANGPTL4 expression in mice.


Subject(s)
Angiopoietin-Like Protein 4/metabolism , Obesity/blood , Triglycerides/blood , Angiopoietin-Like Protein 4/genetics , Animals , Diet, Fat-Restricted , Diet, High-Fat , Dietary Fats/administration & dosage , Female , Gene Expression Regulation/drug effects , Mice , Mice, Knockout , Obesity/metabolism , Pregnancy , Triglycerides/metabolism , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
13.
Elife ; 82019 07 18.
Article in English | MEDLINE | ID: mdl-31305240

ABSTRACT

Metabolic cycles are a fundamental element of cellular and organismal function. Among the most critical in higher organisms is the Cori Cycle, the systemic cycling between lactate and glucose. Here, skeletal muscle-specific Mitochondrial Pyruvate Carrier (MPC) deletion in mice diverted pyruvate into circulating lactate. This switch disinhibited muscle fatty acid oxidation and drove Cori Cycling that contributed to increased energy expenditure. Loss of muscle MPC activity led to strikingly decreased adiposity with complete muscle mass and strength retention. Notably, despite decreasing muscle glucose oxidation, muscle MPC disruption increased muscle glucose uptake and whole-body insulin sensitivity. Furthermore, chronic and acute muscle MPC deletion accelerated fat mass loss on a normal diet after high fat diet-induced obesity. Our results illuminate the role of the skeletal muscle MPC as a whole-body carbon flux control point. They highlight the potential utility of modulating muscle pyruvate utilization to ameliorate obesity and type 2 diabetes.


Subject(s)
Glucose/metabolism , Metabolic Networks and Pathways , Mitochondria, Muscle/metabolism , Muscle Cells/metabolism , Muscle, Skeletal/metabolism , Pyruvic Acid/metabolism , Thinness , Adiposity , Animals , Anion Transport Proteins/deficiency , Gene Deletion , Lactates/metabolism , Mice , Mice, Knockout , Mitochondrial Membrane Transport Proteins/deficiency , Monocarboxylic Acid Transporters/deficiency , Muscle Strength
14.
Oncogene ; 38(13): 2351-2363, 2019 03.
Article in English | MEDLINE | ID: mdl-30518876

ABSTRACT

Obesity is a risk factor for breast cancer and also predicts poor clinical outcomes regardless of menopausal status. Contributing to the poor clinical outcomes is the suboptimal efficacy of standard therapies due to dose limiting toxicities and obesity-related complications, highlighting the need to develop novel therapeutic approaches for treating obese patients. We recently found that obesity leads to an increase in tumor-infiltrating macrophages with activated NLRC4 inflammasome and increased interleukin (IL)-1ß production. IL-1ß, in turn, leads to increased angiogenesis and cancer progression. Using Next Generation RNA sequencing, we identified an NLRC4/IL-1ß-dependent upregulation of angiopoietin-like 4 (ANGPTL4), a known angiogenic factor in cancer, in tumors from obese mice. ANGPTL4-deficiency by genetic knockout or treatment with a neutralizing antibody led to a significant reduction in obesity-induced angiogenesis and tumor growth. At a mechanistic level, ANGPTL4 expression is induced by IL-1ß from primary adipocytes in a manner dependent on NF-κB- and MAP kinase-activation, which is further enhanced by hypoxia. This report shows that adipocyte-derived ANGPTL4 drives disease progression under obese conditions and is a potential therapeutic target for treating obese breast cancer patients.


Subject(s)
Angiopoietin-Like Protein 4/physiology , Breast Neoplasms/pathology , Neovascularization, Pathologic , Obesity/complications , Angiopoietin-Like Protein 4/genetics , Animals , Breast Neoplasms/blood supply , Breast Neoplasms/genetics , Cells, Cultured , Disease Progression , Female , Humans , Inflammasomes/physiology , Inflammation/etiology , Inflammation/genetics , Inflammation/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Mice, Obese , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Obesity/genetics , Obesity/metabolism , Obesity/pathology
15.
J Lipid Res ; 59(7): 1230-1243, 2018 07.
Article in English | MEDLINE | ID: mdl-29739862

ABSTRACT

Mice lacking glycosylphosphatidylinositol-anchored HDL-binding protein 1 (GPIHBP1) are unable to traffic LPL to the vascular lumen. Thus, triglyceride (TG) clearance is severely blunted, and mice are extremely hypertriglyceridemic. Paradoxically, mice lacking both GPIHBP1 and the LPL regulator, angiopoietin-like 4 (ANGPTL4), are far less hypertriglyceridemic. We sought to determine the mechanism by which Angptl4-/-Gpihbp1-/- double-knockout mice clear plasma TGs. We confirmed that, on a normal chow diet, plasma TG levels were lower in Angptl4-/-Gpihbp1-/- mice than in Gpihbp1-/- mice; however, the difference disappeared with administration of a high-fat diet. Although LPL remained mislocalized in double-knockout mice, plasma TG clearance in brown adipose tissue (BAT) increased compared with Gpihbp1-/- mice. Whole lipoprotein uptake was observed in the BAT of both Gpihbp1-/- and Angptl4-/-Gpihbp1-/- mice, but BAT lipase activity was significantly higher in the double-knockout mice. We conclude that Angptl4-/-Gpihbp1-/- mice clear plasma TGs primarily through a slow and noncanonical pathway that includes the uptake of whole lipoprotein particles.


Subject(s)
Angiopoietin-Like Protein 4/deficiency , Receptors, Lipoprotein/deficiency , Triglycerides/blood , Adipose Tissue, Brown/metabolism , Angiopoietin-Like Protein 4/genetics , Animals , Gene Expression Regulation, Enzymologic , Gene Knockout Techniques , Lipoprotein Lipase/metabolism , Mice , Protein Transport , Receptors, Lipoprotein/genetics , Receptors, Lipoprotein/metabolism
16.
Diabetologia ; 61(6): 1277-1281, 2018 06.
Article in English | MEDLINE | ID: mdl-29619530

ABSTRACT

Three members of the angiopoietin-like (ANGPTL) family of proteins, ANGPTL3, ANGPTL4 and ANGPTL8, are known regulators of plasma triacylglycerol levels. Recently, these three proteins have garnered considerable interest as potential targets for therapeutically reducing plasma triacylglycerol levels and improving cardiovascular outcomes. In this issue of Diabetologia, Janssen et al ( https://doi.org/10.1007/s00125-018-4583-5 ) and Vatner et al ( https://doi.org/10.1007/s00125-018-4579-1 ) show that reducing levels of ANGPTL4 and ANGPTL8, respectively, could have the added benefit of improving glucose tolerance. Interestingly, the improvements in glucose tolerance observed in both studies, both done in rodents, were coupled with increased fat mass. These findings suggest that funnelling lipids to adipose tissue and away from ectopic sites could be beneficial and strengthen the argument for pursuing the therapeutic targeting of ANGPTL proteins.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Angiopoietin-like Proteins , Angiopoietins , Animals , Diet , Glucose , Lipid Metabolism , Oligonucleotides, Antisense , Rodentia
17.
Mol Metab ; 6(10): 1137-1149, 2017 10.
Article in English | MEDLINE | ID: mdl-29031715

ABSTRACT

OBJECTIVE: Several members of the angiopoietin-like (ANGPTL) family of proteins, including ANGPTL3 and ANGPTL8, regulate lipoprotein lipase (LPL) activity. Deficiency in either ANGPTL3 or ANGPTL8 reduces plasma triglyceride levels and increases LPL activity, whereas overexpression of either protein does the opposite. Recent studies suggest that ANGPTL8 may functionally interact with ANGPTL3 to alter clearance of plasma triglycerides; however, the nature of this interaction has remained elusive. We tested the hypothesis that ANGPTL8 forms a complex with ANGPTL3 and that this complex is necessary for the inhibition of vascular LPL by ANGPTL3. METHODS: We analyzed the interactions of ANGPTL3 and ANGPTL8 with each other and with LPL using co-immunoprecipitation, western blotting, lipase activity assays, and the NanoBiT split-luciferase system. We also used adenovirus injection to overexpress ANGPTL3 in mice that lacked ANGPTL8. RESULTS: We found that ANGPTL3 or ANGPTL8 alone could only inhibit LPL at concentrations that far exceeded physiological levels, especially when LPL was bound to its endothelial cell receptor/transporter GPIHBP1 (glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1). Physical interaction was observed between ANGPTL3 and ANGPTL8 when the proteins were co-expressed, and co-expression with ANGPTL3 greatly enhanced the secretion of ANGPTL8. Importantly, ANGPTL3-ANGPTL8 complexes had a dramatically increased ability to inhibit LPL compared to either protein alone. Adenovirus experiments showed that 2-fold overexpression of ANGPTL3 significantly increased plasma triglycerides only in the presence of ANGPTL8. Protein interaction assays showed that ANGPTL8 greatly increased the ability of ANGPTL3 to bind LPL. CONCLUSIONS: Together, these data indicate that ANGPTL8 binds to ANGPTL3 and that this complex is necessary for ANGPTL3 to efficiently bind and inhibit LPL.


Subject(s)
Angiopoietin-like Proteins/metabolism , Lipoprotein Lipase/antagonists & inhibitors , Lipoprotein Lipase/metabolism , Angiopoietin-Like Protein 3 , Angiopoietin-Like Protein 8 , Angiopoietins/chemistry , Animals , CHO Cells , Carrier Proteins/metabolism , Cricetulus , Endothelial Cells/metabolism , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Peptide Hormones/metabolism , Protein Binding , Rats , Receptors, Lipoprotein/metabolism
18.
Mol Metab ; 6(8): 809-818, 2017 08.
Article in English | MEDLINE | ID: mdl-28752045

ABSTRACT

OBJECTIVE: Angiopoietin-like 4 (ANGPTL4) is a fasting-induced inhibitor of lipoprotein lipase (LPL) and a regulator of plasma triglyceride metabolism. Here, we examined the kinetics of Angptl4 induction and tested the hypothesis that ANGPTL4 functions physiologically to reduce triglyceride delivery to adipose tissue during nutrient deprivation. METHODS: Gene expression, LPL activity, and triglyceride uptake were examined in fasted and fed wild-type and Angptl4-/- mice. RESULTS: Angptl4 was strongly induced early in fasting, and this induction was suppressed in mice with access to food during the light cycle. Fasted Angptl4-/- mice manifested increased LPL activity and triglyceride uptake in adipose tissue compared to wild-type mice. CONCLUSIONS: Angptl4 is induced early in fasting to divert uptake of fatty acids and triglycerides away from adipose tissues.


Subject(s)
Adipose Tissue/metabolism , Angiopoietin-Like Protein 4/metabolism , Dietary Fats/metabolism , Fasting/metabolism , Angiopoietin-Like Protein 4/genetics , Animals , Male , Mice , Mice, Inbred C57BL , Triglycerides/metabolism
19.
J Biol Chem ; 290(19): 11865-77, 2015 May 08.
Article in English | MEDLINE | ID: mdl-25809481

ABSTRACT

The release of fatty acids from plasma triglycerides for tissue uptake is critically dependent on the enzyme lipoprotein lipase (LPL). Hydrolysis of plasma triglycerides by LPL can be disrupted by the protein angiopoietin-like 4 (ANGPTL4), and ANGPTL4 has been shown to inactivate LPL in vitro. However, in vivo LPL is often complexed to glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) on the surface of capillary endothelial cells. GPIHBP1 is responsible for trafficking LPL across capillary endothelial cells and anchors LPL to the capillary wall during lipolysis. How ANGPTL4 interacts with LPL in this context is not known. In this study, we investigated the interactions of ANGPTL4 with LPL-GPIHBP1 complexes on the surface of endothelial cells. We show that ANGPTL4 was capable of binding and inactivating LPL complexed to GPIHBP1 on the surface of endothelial cells. Once inactivated, LPL dissociated from GPIHBP1. We also show that ANGPTL4-inactivated LPL was incapable of binding GPIHBP1. ANGPTL4 was capable of binding, but not inactivating, LPL at 4 °C, suggesting that binding alone was not sufficient for ANGPTL4's inhibitory activity. We observed that although the N-terminal coiled-coil domain of ANGPTL4 by itself and full-length ANGPTL4 both bound with similar affinities to LPL, the N-terminal fragment was more potent in inactivating both free and GPIHBP1-bound LPL. These results led us to conclude that ANGPTL4 can both bind and inactivate LPL complexed to GPIHBP1 and that inactivation of LPL by ANGPTL4 greatly reduces the affinity of LPL for GPIHBP1.


Subject(s)
Angiopoietins/metabolism , Endothelial Cells/enzymology , Gene Expression Regulation , Lipoprotein Lipase/metabolism , Receptors, Lipoprotein/metabolism , Angiopoietin-Like Protein 4 , Animals , Biological Transport , Cells, Cultured , Culture Media, Conditioned/chemistry , Endothelial Cells/cytology , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Humans , Lipolysis , Protein Binding , Protein Structure, Tertiary , Rats , Triglycerides/chemistry
20.
Circ Res ; 116(4): 624-32, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25387803

ABSTRACT

RATIONALE: GPIHBP1, a GPI-anchored protein of capillary endothelial cells, binds lipoprotein lipase (LPL) in the subendothelial spaces and shuttles it to the capillary lumen. GPIHBP1 missense mutations that interfere with LPL binding cause familial chylomicronemia. OBJECTIVE: We sought to understand mechanisms by which GPIHBP1 mutations prevent LPL binding and lead to chylomicronemia. METHODS AND RESULTS: We expressed mutant forms of GPIHBP1 in Chinese hamster ovary cells, rat and human endothelial cells, and Drosophila S2 cells. In each expression system, mutation of cysteines in GPIHBP1's Ly6 domain (including mutants identified in patients with chylomicronemia) led to the formation of disulfide-linked dimers and multimers. GPIHBP1 dimerization/multimerization was not unique to cysteine mutations; mutations in other amino acid residues, including several associated with chylomicronemia, also led to protein dimerization/multimerization. The loss of GPIHBP1 monomers is relevant to the pathogenesis of chylomicronemia because only GPIHBP1 monomers-and not dimers or multimers-are capable of binding LPL. One GPIHBP1 mutant, GPIHBP1-W109S, had distinctive properties. GPIHBP1-W109S lacked the ability to bind LPL but had a reduced propensity for forming dimers or multimers, suggesting that W109 might play a more direct role in binding LPL. In support of that idea, replacing W109 with any of 8 other amino acids abolished LPL binding-and often did so without promoting the formation of dimers and multimers. CONCLUSIONS: Many amino acid substitutions in GPIHBP1's Ly6 domain that abolish LPL binding lead to protein dimerization/multimerization. Dimerization/multimerization is relevant to disease pathogenesis, given that only GPIHBP1 monomers are capable of binding LPL.


Subject(s)
Hyperlipoproteinemia Type I/enzymology , Lipoprotein Lipase/metabolism , Mutation, Missense , Receptors, Lipoprotein/metabolism , Animals , Binding Sites , CHO Cells , Cricetulus , Cysteine , Drosophila/cytology , Drosophila/metabolism , Human Umbilical Vein Endothelial Cells/enzymology , Humans , Hyperlipoproteinemia Type I/genetics , Models, Molecular , Phosphoinositide Phospholipase C/metabolism , Protein Binding , Protein Conformation , Protein Multimerization , Rats , Receptors, Lipoprotein/chemistry , Receptors, Lipoprotein/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...