Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Parasit Vectors ; 11(1): 393, 2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29973272

ABSTRACT

BACKGROUND: Toxoplasma gondii is an obligate intracellular protozoan parasite that causes congenital toxoplasmosis, as well as other serious clinical presentations in immune compromised humans. The parasite has also been recently linked to behavioral diseases in humans and other mammalian hosts. New antigens are being evaluated to develop a diagnostic kit for the diagnosis of acute infection or a protective vaccine. METHODS: In this study, we have focused on the discovery of new antigenic proteins from T. gondii genomic data using a high throughput protein microarray screening. To date, microarrays containing > 2870 candidate exon products of T. gondii have been probed with sera collected from patients with toxoplasmosis. Here, the protein microarrays are probed with well-characterized serum samples from animal models administered orally with oocysts or tissue cysts. The aim was to discover the antigens that overlap in the mouse profile with human antibody profiles published previously. For this, a reactive antigen list of 240 antigens recognized by murine IgG and IgM was identified using pooled sera from orally infected mice. RESULTS: Analyses of screening data have identified plenty of antigens and showed strong immunogenicity in both mouse and human antibody profiles. Among them, ROP1, GRA2, GRA3, GRA4, GRA5, GRA6, GRA7, GRA8, GRA14, MIC1, MIC2 and MAG1 have shown strong immunogenicity and used as antigen in development of vaccines or serological diagnostic assays in previous studies. CONCLUSION: In addition to the above findings, ROP6, MIC12, SRS29A and SRS13 have shown strong immunogenicity but have not been tested in development of a diagnostic assay or a vaccine model yet.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/isolation & purification , Oocysts/immunology , Protein Array Analysis , Protozoan Proteins/isolation & purification , Toxoplasma/chemistry , Administration, Oral , Animals , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/blood , Mice , Protozoan Proteins/immunology , Serologic Tests , Toxoplasma/genetics , Toxoplasma/immunology , Toxoplasmosis/blood , Toxoplasmosis/diagnosis , Toxoplasmosis/immunology
3.
Open Forum Infect Dis ; 2(3): ofv118, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26361633

ABSTRACT

Background. People of the Fulani ethnic group are more resistant to malaria compared with genetically distinct ethnic groups, such as the Dogon people, in West Africa, and studies suggest that this resistance is mediated by enhanced antibody responses to Plasmodium falciparum antigens. However, prior studies measured antibody responses to <0.1% of P falciparum proteins, so whether the Fulani mount an enhanced and broadly reactive immunoglobulin (Ig)M and IgG response to P falciparum remains unknown. In general, little is known about the extent to which host genetics influence the overall antigen specificity of IgM and IgG responses to natural infections. Methods. In a cross-sectional study in Mali, we collected plasma from asymptomatic, age-matched Fulani (n = 24) and Dogon (n = 22) adults with or without concurrent P falciparum infection. We probed plasma against a protein microarray containing 1087 P falciparum antigens and compared IgM and IgG profiles by ethnicity. Results. We found that the breadth and magnitude of P falciparum-specific IgM and IgG responses were significantly higher in the malaria-resistant Fulani versus the malaria-susceptible Dogon, and, unexpectedly, P falciparum-specific IgM responses more strongly distinguished the 2 ethnic groups. Conclusions. These findings point to an underappreciated role for IgM in protection from malaria, and they suggest that host genetics may influence the antigen specificity of IgM and IgG responses to infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...