Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Biotechnol ; 15(5): 1574-1585, 2022 05.
Article in English | MEDLINE | ID: mdl-34927803

ABSTRACT

The development and advent of mutagenesis tools for solventogenic clostridial species in recent years has allowed for the increased refinement of industrially relevant strains. In this study we have utilised CLEAVE™, a CRISPR/Cas genome editing system developed by Green Biologics Ltd., to engineer a strain of Clostridium saccharoperbutylacetonicum N1-4(HMT) with potentially useful solvents titres and energy metabolism. As one of two enzymes responsible for the conversion of glyceraldehyde-3-phosphate (GAP) to 3-phosphoglyceric acid in glycolysis, it was hypothesised that deletion of gapN would increase ATP and NADH production that could in turn improve solvent production. Herein, whole genome sequencing has been used to evaluate CLEAVE™ and the successful knockout of gapN, demonstrating a clean knockout with no other detectable variations from the wild type sequence. Elevated solvent levels were detected during the first 24 h of batch fermentation, indicating an earlier shift to solventogenesis. A 2.4-fold increase in ATP concentration was observed, and quantitation of NAD(P)H derivatives revealed a more reducing cytoplasm for the gapN strain. These findings expand our understanding of clostridium carbon metabolism and report a new approach to optimising biofuel production.


Subject(s)
Clostridium , Glyceraldehyde-3-Phosphate Dehydrogenases , Adenosine Triphosphate/metabolism , Clostridium/genetics , Clostridium/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Solvents/metabolism
2.
Biotechnol Prog ; 33(3): 563-579, 2017 May.
Article in English | MEDLINE | ID: mdl-28188696

ABSTRACT

The production of biobutanol is hindered by the product's toxicity to the bacteria, which limits the productivity of the process. In situ product recovery of butanol can improve the productivity by removing the source of inhibition. This paper reviews in situ product recovery techniques applied to the acetone butanol ethanol fermentation in a stirred tank reactor. Methods of in situ recovery include gas stripping, vacuum fermentation, pervaporation, liquid-liquid extraction, perstraction, and adsorption, all of which have been investigated for the acetone, butanol, and ethanol fermentation. All techniques have shown an improvement in substrate utilization, yield, productivity or both. Different fermentation modes favored different techniques. For batch processing gas stripping and pervaporation were most favorable, but in fed-batch fermentations gas stripping and adsorption were most promising. During continuous processing perstraction appeared to offer the best improvement. The use of hybrid techniques can increase the final product concentration beyond that of single-stage techniques. Therefore, the selection of an in situ product recovery technique would require comparable information on the energy demand and economics of the process. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:563-579, 2017.


Subject(s)
Fermentation/physiology , Acetone/metabolism , Biotechnology/methods , Butanols/metabolism , Ethanol/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...