Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Cells ; 12(5)2023 03 04.
Article in English | MEDLINE | ID: mdl-36899943

ABSTRACT

Precision-cut tumor slices (PCTS) maintain tissue heterogeneity concerning different cell types and preserve the tumor microenvironment (TME). Typically, PCTS are cultured statically on a filter support at an air-liquid interface, which gives rise to intra-slice gradients during culture. To overcome this problem, we developed a perfusion air culture (PAC) system that can provide a continuous and controlled oxygen medium, and drug supply. This makes it an adaptable ex vivo system for evaluating drug responses in a tissue-specific microenvironment. PCTS from mouse xenografts (MCF-7, H1437) and primary human ovarian tumors (primary OV) cultured in the PAC system maintained the morphology, proliferation, and TME for more than 7 days, and no intra-slice gradients were observed. Cultured PCTS were analyzed for DNA damage, apoptosis, and transcriptional biomarkers for the cellular stress response. For the primary OV slices, cisplatin treatment induced a diverse increase in the cleavage of caspase-3 and PD-L1 expression, indicating a heterogeneous response to drug treatment between patients. Immune cells were preserved throughout the culturing period, indicating that immune therapy can be analyzed. The novel PAC system is suitable for assessing individual drug responses and can thus be used as a preclinical model to predict in vivo therapy responses.


Subject(s)
Biological Phenomena , Ovarian Neoplasms , Female , Humans , Mice , Animals , Perfusion , Tumor Microenvironment
2.
PLoS Biol ; 20(5): e3001624, 2022 05.
Article in English | MEDLINE | ID: mdl-35617197

ABSTRACT

Test compounds used on in vitro model systems are conventionally delivered to cell culture wells as fixed concentration bolus doses; however, this poorly replicates the pharmacokinetic (PK) concentration changes seen in vivo and reduces the predictive value of the data. Herein, proof-of-concept experiments were performed using a novel microfluidic device, the Microformulator, which allows in vivo like PK profiles to be applied to cells cultured in microtiter plates and facilitates the investigation of the impact of PK on biological responses. We demonstrate the utility of the device in its ability to reproduce in vivo PK profiles of different oncology compounds over multiweek experiments, both as monotherapy and drug combinations, comparing the effects on tumour cell efficacy in vitro with efficacy seen in in vivo xenograft models. In the first example, an ERK1/2 inhibitor was tested using fixed bolus dosing and Microformulator-replicated PK profiles, in 2 cell lines with different in vivo sensitivities. The Microformulator-replicated PK profiles were able to discriminate between cell line sensitivities, unlike the conventional fixed bolus dosing. In a second study, murine in vivo PK profiles of multiple Poly(ADP-Ribose) Polymerase 1/2 (PARP) and DNA-dependent protein kinase (DNA-PK) inhibitor combinations were replicated in a FaDu cell line resulting in a reduction in cell growth in vitro with similar rank ordering to the in vivo xenograft model. Additional PK/efficacy insight into theoretical changes to drug exposure profiles was gained by using the Microformulator to expose FaDu cells to the DNA-PK inhibitor for different target coverage levels and periods of time. We demonstrate that the Microformulator enables incorporating PK exposures into cellular assays to improve in vitro-in vivo translation understanding for early therapeutic insight.


Subject(s)
Cell Culture Techniques , Microfluidics , Animals , DNA , Humans , Mice , Models, Biological
3.
Mol Cancer Ther ; 20(2): 238-249, 2021 02.
Article in English | MEDLINE | ID: mdl-33273059

ABSTRACT

The RAS-regulated RAF-MEK1/2-ERK1/2 (RAS/MAPK) signaling pathway is a major driver in oncogenesis and is frequently dysregulated in human cancers, primarily by mutations in BRAF or RAS genes. The clinical benefit of inhibitors of this pathway as single agents has only been realized in BRAF-mutant melanoma, with limited effect of single-agent pathway inhibitors in KRAS-mutant tumors. Combined inhibition of multiple nodes within this pathway, such as MEK1/2 and ERK1/2, may be necessary to effectively suppress pathway signaling in KRAS-mutant tumors and achieve meaningful clinical benefit. Here, we report the discovery and characterization of AZD0364, a novel, reversible, ATP-competitive ERK1/2 inhibitor with high potency and kinase selectivity. In vitro, AZD0364 treatment resulted in inhibition of proximal and distal biomarkers and reduced proliferation in sensitive BRAF-mutant and KRAS-mutant cell lines. In multiple in vivo xenograft models, AZD0364 showed dose- and time-dependent modulation of ERK1/2-dependent signaling biomarkers resulting in tumor regression in sensitive BRAF- and KRAS-mutant xenografts. We demonstrate that AZD0364 in combination with the MEK1/2 inhibitor, selumetinib (AZD6244 and ARRY142886), enhances efficacy in KRAS-mutant preclinical models that are moderately sensitive or resistant to MEK1/2 inhibition. This combination results in deeper and more durable suppression of the RAS/MAPK signaling pathway that is not achievable with single-agent treatment. The AZD0364 and selumetinib combination also results in significant tumor regressions in multiple KRAS-mutant xenograft models. The combination of ERK1/2 and MEK1/2 inhibition thereby represents a viable clinical approach to target KRAS-mutant tumors.


Subject(s)
Benzimidazoles/therapeutic use , Imidazoles/therapeutic use , Proto-Oncogene Proteins p21(ras)/metabolism , Pyrazines/therapeutic use , Pyrimidines/therapeutic use , Animals , Benzimidazoles/pharmacology , Disease Models, Animal , Humans , Imidazoles/pharmacology , Mice , Mice, Nude , Pyrazines/pharmacology , Pyrimidines/pharmacology
4.
Nat Commun ; 11(1): 4903, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32994412

ABSTRACT

The CRISPR-Cas9 system has increased the speed and precision of genetic editing in cells and animals. However, model generation for drug development is still expensive and time-consuming, demanding more target flexibility and faster turnaround times with high reproducibility. The generation of a tightly controlled ObLiGaRe doxycycline inducible SpCas9 (ODInCas9) transgene and its use in targeted ObLiGaRe results in functional integration into both human and mouse cells culminating in the generation of the ODInCas9 mouse. Genomic editing can be performed in cells of various tissue origins without any detectable gene editing in the absence of doxycycline. Somatic in vivo editing can model non-small cell lung cancer (NSCLC) adenocarcinomas, enabling treatment studies to validate the efficacy of candidate drugs. The ODInCas9 mouse allows robust and tunable genome editing granting flexibility, speed and uniformity at less cost, leading to high throughput and practical preclinical in vivo therapeutic testing.


Subject(s)
CRISPR-Cas Systems/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Discovery/methods , Gene Editing/methods , Lung Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , CRISPR-Associated Protein 9/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Doxycycline/pharmacology , Drug Screening Assays, Antitumor/methods , Female , Gene Expression/drug effects , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/drug effects , Genetic Vectors/genetics , HEK293 Cells , High-Throughput Screening Assays/methods , Humans , Lung Neoplasms/genetics , Male , Mice , Mice, Transgenic , RNA, Guide, Kinetoplastida/genetics , Recombination, Genetic/drug effects , Reproducibility of Results , Transcriptional Activation/drug effects , Transfection/methods , Transgenes/genetics
5.
J Med Chem ; 62(24): 11004-11018, 2019 12 26.
Article in English | MEDLINE | ID: mdl-31710489

ABSTRACT

The RAS/MAPK pathway is a major driver of oncogenesis and is dysregulated in approximately 30% of human cancers, primarily by mutations in the BRAF or RAS genes. The extracellular-signal-regulated kinases (ERK1 and ERK2) serve as central nodes within this pathway. The feasibility of targeting the RAS/MAPK pathway has been demonstrated by the clinical responses observed through the use of BRAF and MEK inhibitors in BRAF V600E/K metastatic melanoma; however, resistance frequently develops. Importantly, ERK1/2 inhibition may have clinical utility in overcoming acquired resistance to RAF and MEK inhibitors, where RAS/MAPK pathway reactivation has occurred, such as relapsed BRAF V600E/K melanoma. We describe our structure-based design approach leading to the discovery of AZD0364, a potent and selective inhibitor of ERK1 and ERK2. AZD0364 exhibits high cellular potency (IC50 = 6 nM) as well as excellent physicochemical and absorption, distribution, metabolism, and excretion (ADME) properties and has demonstrated encouraging antitumor activity in preclinical models.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Discovery , Imidazoles/therapeutic use , Lung Neoplasms/drug therapy , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrazines/therapeutic use , Pyrimidines/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Apoptosis , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation , Drug Therapy, Combination , Female , Humans , Imidazoles/pharmacology , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Mice , Mice, Nude , Molecular Structure , Protein Kinase Inhibitors/administration & dosage , Pyrazines/pharmacology , Pyrimidines/administration & dosage , Pyrimidines/therapeutic use , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
Nat Commun ; 10(1): 5167, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31727888

ABSTRACT

BRAF and MEK1/2 inhibitors are effective in melanoma but resistance inevitably develops. Despite increasing the abundance of pro-apoptotic BIM and BMF, ERK1/2 pathway inhibition is predominantly cytostatic, reflecting residual pro-survival BCL2 family activity. Here, we show that uniquely low BCL-XL expression in melanoma biases the pro-survival pool towards MCL1. Consequently, BRAF or MEK1/2 inhibitors are synthetic lethal with the MCL1 inhibitor AZD5991, driving profound tumour cell death that requires BAK/BAX, BIM and BMF, and inhibiting tumour growth in vivo. Combination of ERK1/2 pathway inhibitors with BCL2/BCL-w/BCL-XL inhibitors is stronger in CRC, correlating with a low MCL1:BCL-XL ratio; indeed the MCL1:BCL-XL ratio is predictive of ERK1/2 pathway inhibitor synergy with MCL1 or BCL2/BCL-w/BCL-XL inhibitors. Finally, AZD5991 delays acquired BRAFi/MEKi resistance and enhances the efficacy of an ERK1/2 inhibitor in a model of acquired BRAFi + MEKi resistance. Thus combining ERK1/2 pathway inhibitors with MCL1 antagonists in melanoma could improve therapeutic index and patient outcomes.


Subject(s)
Apoptosis , MAP Kinase Signaling System , Melanoma/pathology , Molecular Targeted Therapy , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Survival/drug effects , Drug Resistance, Neoplasm/drug effects , Humans , MAP Kinase Signaling System/drug effects , Macrocyclic Compounds/pharmacology , Mice , Proto-Oncogene Proteins B-raf/metabolism , bcl-X Protein/metabolism
8.
Sci Data ; 4: 170170, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29160867

ABSTRACT

Two-dimensional (2D) culture of cancer cells in vitro does not recapitulate the three-dimensional (3D) architecture, heterogeneity and complexity of human tumors. More representative models are required that better reflect key aspects of tumor biology. These are essential studies of cancer biology and immunology as well as for target validation and drug discovery. The Innovative Medicines Initiative (IMI) consortium PREDECT (www.predect.eu) characterized in vitro models of three solid tumor types with the goal to capture elements of tumor complexity and heterogeneity. 2D culture and 3D mono- and stromal co-cultures of increasing complexity, and precision-cut tumor slice models were established. Robust protocols for the generation of these platforms are described. Tissue microarrays were prepared from all the models, permitting immunohistochemical analysis of individual cells, capturing heterogeneity. 3D cultures were also characterized using image analysis. Detailed step-by-step protocols, exemplary datasets from the 2D, 3D, and slice models, and refined analytical methods were established and are presented.


Subject(s)
Models, Biological , Neoplasms , Cell Culture Techniques , Humans , Imaging, Three-Dimensional
9.
Biomaterials ; 78: 50-61, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26650685

ABSTRACT

3D cell tumour models are generated mainly in non-scalable culture systems, using bioactive scaffolds. Many of these models fail to reflect the complex tumour microenvironment and do not allow long-term monitoring of tumour progression. To overcome these limitations, we have combined alginate microencapsulation with agitation-based culture systems, to recapitulate and monitor key aspects of the tumour microenvironment and disease progression. Aggregates of MCF-7 breast cancer cells were microencapsulated in alginate, either alone or in combination with human fibroblasts, then cultured for 15 days. In co-cultures, the fibroblasts arranged themselves around the tumour aggregates creating distinct epithelial and stromal compartments. The presence of fibroblasts resulted in secretion of pro-inflammatory cytokines and deposition of collagen in the stromal compartment. Tumour cells established cell-cell contacts and polarised around small lumina in the interior of the aggregates. Over the culture period, there was a reduction in oestrogen receptor and membranous E-cadherin alongside loss of cell polarity, increased collective cell migration and enhanced angiogenic potential in co-cultures. These phenotypic alterations, typical of advanced stages of cancer, were not observed in the mono-cultures of MCF-7 cells. The proposed model system constitutes a new tool to study tumour-stroma crosstalk, disease progression and drug resistance mechanisms.


Subject(s)
Tumor Microenvironment , Coculture Techniques , Disease Progression , Drug Resistance, Neoplasm , Humans , MCF-7 Cells
10.
Sci Rep ; 5: 17187, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26647838

ABSTRACT

Precision-cut slices of in vivo tumours permit interrogation in vitro of heterogeneous cells from solid tumours together with their native microenvironment. They offer a low throughput but high content in vitro experimental platform. Using mouse models as surrogates for three common human solid tumours, we describe a standardised workflow for systematic comparison of tumour slice cultivation methods and a tissue microarray-based method to archive them. Cultivated slices were compared to their in vivo source tissue using immunohistochemical and transcriptional biomarkers, particularly of cellular stress. Mechanical slicing induced minimal stress. Cultivation of tumour slices required organotypic support materials and atmospheric oxygen for maintenance of integrity and was associated with significant temporal and loco-regional changes in protein expression, for example HIF-1α. We recommend adherence to the robust workflow described, with recognition of temporal-spatial changes in protein expression before interrogation of tumour slices by pharmacological or other means.


Subject(s)
Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Animals , Biomarkers , Cell Line, Tumor , Gene Expression , Heterografts , Humans , Immunohistochemistry/methods , Mice , Oxygen/metabolism , Principal Component Analysis , Real-Time Polymerase Chain Reaction , Signal Transduction , Stress, Physiological , Tissue Array Analysis , Tissue Culture Techniques
11.
JRSM Open ; 5(7): 2054270414527281, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25057405

ABSTRACT

A type VI acromioclavicular joint injury with a supracoracoid location of the distal end of the clavicle (VIa) may be associated with low energy injuries and, in association with a clavicle fracture, can successfully be treated with reduction of the dislocation, fixation of the clavicle, and may not require reconstruction of the acromioclavicular ligaments. An infracoracoid location (VIb) is highly suggestive of a higher energy injury.

12.
Am J Pathol ; 184(1): 86-91, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24200851

ABSTRACT

Cowden syndrome (CS) is a rare autosomal dominant cancer-prone disorder caused by germ-line mutation of the phosphatase and tensin homolog mutated on chromosome 10 (PTEN) tumor-suppressor gene. Affected patients commonly develop juvenile polyps, and show an elevated risk of developing colorectal cancers. The etiology of these peculiar polyps remains unclear, although previous work has suggested somatic PTEN alterations in the stroma of juvenile polyps. After a long latency period, we find epithelial-specific PTEN deletion to cause formation of juvenile polyps in the colorectum without stromal PTEN loss. More important, we find that these lesions closely recapitulate all of the characteristic histopathological features of juvenile polyps seen in patients with CS, including stromal alterations and dysplastic transformation to colorectal carcinoma. The stromal alterations we identify after epithelial-specific PTEN loss suggest that PTEN may be involved in altered epithelial-mesenchymal cross talk, which, in turn, predisposes to colorectal neoplasia and polyposis. Our transgenic model is the first to recapitulate colorectal juvenile polyposis in patients with CS. We conclude that stromal PTEN loss is not a prerequisite for the formation of juvenile polyps, and that colorectal juvenile polyps in CS are bona fide neoplastic precursor lesions.


Subject(s)
Colorectal Neoplasms/genetics , Disease Models, Animal , Intestinal Polyps/genetics , PTEN Phosphohydrolase/genetics , Precancerous Conditions/genetics , Animals , Colorectal Neoplasms/pathology , Hamartoma Syndrome, Multiple/genetics , Hamartoma Syndrome, Multiple/pathology , Immunohistochemistry , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestinal Polyposis/congenital , Intestinal Polyposis/genetics , Intestinal Polyposis/pathology , Intestinal Polyps/pathology , Mice , Mice, Transgenic , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/pathology , Precancerous Conditions/pathology , Stromal Cells/metabolism , Stromal Cells/pathology
13.
J Pathol ; 233(1): 27-38, 2014 May.
Article in English | MEDLINE | ID: mdl-24293351

ABSTRACT

Mutation or loss of the genes PTEN and KRAS have been implicated in human colorectal cancer (CRC), and have been shown to co-occur despite both playing a role in the PI3' kinase (PI3'K) pathway. We investigated the role of these genes in intestinal tumour progression in vivo, using genetically engineered mouse models, with the aim of generating more representative models of human CRC. Intestinal-specific deletion of Pten and activation of an oncogenic allele of Kras was induced in wild-type (WT) mice and mice with a predisposition to adenoma development (Apc(fl/+) ). The animals were euthanized when they became symptomatic of a high tumour burden. Histopathological examination of the tissues was carried out, and immunohistochemistry used to characterize signalling pathway activation. Mutation of Pten and Kras resulted in a significant life-span reduction of mice predisposed to adenomas. Invasive adenocarcinoma was observed in these animals, with evidence of activation of the PI3'K pathway but no metastasis. However, mutation of Pten and Kras in WT animals not predisposed to adenomas led to perturbed homeostasis of the intestinal epithelium and the development of hyperplastic polyps, dysplastic sessile serrated adenomas and metastasizing adenocarcinomas with serrated features. These studies demonstrate synergism between Pten and Kras mutations in intestinal tumour progression, in an autochthonous and immunocompetent murine model, with potential application to preclinical drug testing. In particular, they show that Pten and Kras mutations alone predispose mice to the spectrum of serrated lesions that reflect the serrated pathway of CRC progression in humans.


Subject(s)
Adenocarcinoma/metabolism , Adenoma/metabolism , Intestinal Neoplasms/metabolism , Intestinal Polyps/metabolism , Intestine, Small/metabolism , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/secondary , Adenoma/genetics , Adenoma/pathology , Animals , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Disease Models, Animal , Female , Genes, APC , Genetic Predisposition to Disease , Hyperplasia , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestinal Neoplasms/genetics , Intestinal Neoplasms/pathology , Intestinal Polyps/genetics , Intestinal Polyps/pathology , Intestine, Small/pathology , Male , Mice , Mice, Knockout , Mice, Transgenic , Mutation , Neoplasm Invasiveness , PTEN Phosphohydrolase/deficiency , PTEN Phosphohydrolase/genetics , Phenotype , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction , Time Factors , Tumor Burden
14.
J Pathol ; 230(2): 165-73, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23483557

ABSTRACT

Carcinomas of the biliary tract are aggressive malignancies in humans. Loss of the tumour suppressor PTEN has previously been associated with cholangiocarcinoma development in a murine model. Activation of KRAS is reported in up to one-third of human cholangiocarcinomas and 50% of gall bladder carcinomas. In this study we aimed to test the potential interaction between PTEN and KRAS mutation in biliary tract malignancy. We used an inducible Cre-LoxP-based approach to coordinately delete PTEN and activate KRAS within the adult mouse biliary epithelium. We found that activation of KRAS alone has little effect upon biliary epithelium. Loss of PTEN alone results in the development of low-grade neoplastic lesions, following long latency and at low incidence. Combination of both mutations causes rapid development of biliary epithelial proliferative lesions, which progress through dysplasia to invasive carcinoma. We conclude that activation of the PI3'K pathway following loss of PTEN is sufficient to drive slow development of low-grade biliary lesions in mice. In contrast, mutational activation of KRAS does not result in a similar phenotype, despite a prediction that this should activate both the RAF-MEK-ERK and PI3'-kinase pathways. However, mutation of both genes results in rapid tumourigenesis, arguing that PTEN normally functions as a 'brake' on the PI3'-kinase pathway, limiting the influence of KRAS activation. Mutation of both genes creates a 'permissive' environment, allowing the full effects of both mutations to be manifested. These data reveal an in vivo synergy between these mutations and provides a new mouse model of biliary tract malignancy.


Subject(s)
Bile Duct Neoplasms/genetics , Cholangiocarcinoma/genetics , PTEN Phosphohydrolase/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Animals, Outbred Strains , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/mortality , Biliary Tract/cytology , Biliary Tract/metabolism , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/mortality , Epithelial Cells/metabolism , Extracellular Signal-Regulated MAP Kinases/genetics , Female , Gene Deletion , Gene Expression Regulation, Neoplastic , Kaplan-Meier Estimate , Male , Mice , Mitogen-Activated Protein Kinase Kinases/genetics , Mutation , PTEN Phosphohydrolase/deficiency , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/biosynthesis , Survival Rate
15.
Mol Carcinog ; 50(4): 254-63, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21465575

ABSTRACT

Colorectal cancer is one of the most common cancers in the western world and its incidence is steadily increasing. Understanding the basic biology of both the normal intestine and of intestinal tumorigenesis is vital for developing appropriate and effective cancer therapies. However, relatively little is known about the normal intestinal stem cell or the hypothetical intestinal cancer stem cell, and there is much debate surrounding these areas. This review briefly describes our current understanding of the properties of both the intestinal stem cell and the intestinal cancer stem cell. We also discuss recent theories regarding the origin of the intestinal cancer stem cell, and the signals required for its maintenance and proliferation. Finally, we place the relevance of cancer stem cell research into context by discussing potential clinical applications of targeting the intestinal cancer stem cell.


Subject(s)
Cell Lineage , Colorectal Neoplasms/pathology , Neoplastic Stem Cells/pathology , Signal Transduction , Animals , Cell Differentiation , Humans , Intestines/cytology , Stem Cells/cytology
16.
J Strength Cond Res ; 18(4): 898-903, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15586950

ABSTRACT

The relationships between local muscular endurance and kinematic changes during a run to exhaustion at vVo2max. J Strength Cond. Res. 18(4):000-000. 2004.-A recent study suggested that runners who maintain a stable running style are able to run for longer at vVo2max velocity (vVo2max). This may be because of the capacity of various muscle groups to maintain their functions despite the onset of fatigue. The purpose of this study was to examine the relationship between local muscular endurance of both the hip and knee extensor and flexor muscle groups and the kinematic changes during a run to exhaustion at vVo2max. Six subelite runners (age 24.2 + 4.2) participated in this study;they were considered as a homogeneous group based upon theirvVo2max scores (coefficient of variation = 3.9%). They performed an incremental protocol to determine vVo2max, a series of isokinetic tests to determine the local muscular endurance of both knee and hip flexors and extensors, and a run to exhaustion at vVo2max. The change in kinematic variables between the beginning and the end of the run were correlated with the measures of muscular endurance. Several statistically significant negative correlations emerged between the change in stride length and concentric hip extension (HE(con)), r = -0.934; eccentric hip extension (HE(ecc)), r = -0.818; eccentric knee flexion(KF(ecc)), r = -0.957; and change in maximum hip extension (Delta max HE), r - -0.857; and Delta max HE with HE(con), r = -0.846.We concluded that the local muscular endurance of both HE(con) and KF(ecc) are important in maintaining a stable running style.


Subject(s)
Oxygen Consumption/physiology , Physical Endurance/physiology , Running/physiology , Adult , Anaerobic Threshold , Biomechanical Phenomena , Exercise Tolerance , Humans , Leg/physiology , Male
17.
J Exp Bot ; 54(386): 1351-60, 2003 May.
Article in English | MEDLINE | ID: mdl-12709481

ABSTRACT

Evidence from a number of plant tissues suggests that phosphoglucomutase (PGM) is present in both the cytosol and the plastid. The cytosolic and plastidic isoforms of PGM have been partially purified from wheat endosperm (Triticum aestivum L. cv. Axona). Both isoforms required glucose 1,6-bisphosphate for their activity with K(a) values of 4.5 micro M and 3.8 micro M for cytosolic and plastidic isoforms, respectively, and followed normal Michaelis-Menten kinetics with glucose 1-phosphate as the substrate with K(m) values of 0.1 mM and 0.12 mM for the cytosolic and plastidic isoforms, respectively. A cDNA clone was isolated from wheat endosperm that encodes the cytosolic isoform of PGM. The deduced amino acid sequence shows significant homology to PGMs from eukaryotic and prokaryotic sources. PGM activity was measured in whole cell extracts and in amyloplasts isolated during the development of wheat endosperm. Results indicate an approximate 80% reduction in measurable activity of plastidial and cytosolic PGM between 8 d and 30 d post-anthesis. Northern analysis showed a reduction in cytosolic PGM mRNA accumulation during the same period of development. The implications of the changes in PGM activity during the synthesis of starch in developing endosperm are discussed.


Subject(s)
Phosphoglucomutase/genetics , Seeds/enzymology , Triticum/enzymology , Amino Acid Sequence , Cytosol/enzymology , DNA, Complementary/chemistry , DNA, Complementary/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Isoenzymes/genetics , Isoenzymes/isolation & purification , Isoenzymes/metabolism , Molecular Sequence Data , Phosphoglucomutase/isolation & purification , Phosphoglucomutase/metabolism , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seeds/genetics , Seeds/growth & development , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Triticum/genetics , Triticum/growth & development
18.
J Exp Bot ; 54(383): 715-25, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12554715

ABSTRACT

The intracellular location of ADPglucose pyrophosphorylase (AGPase) in wheat during endosperm development was investigated by analysis of the recovery of marker enzymes from amyloplast preparations. Amyloplast preparations contained 20-28% of the total endosperm activity of two plastidial marker enzymes and less than 0.8% of the total endosperm activity of two cytosolic marker enzymes. Amylo plasts prepared at various stages of development, from 8-30 d post anthesis, contained between 2% and 10% of the total AGPase activity; this implies that between 7% and 40% of the AGPase in wheat endosperm is plastidial during this period of development. Two proteins were recognized by antibodies to both the large and small subunits of wheat AGPase. The larger of the two AGPases was the major form of the enzyme in whole cell extracts, and the smaller, less abundant, form of AGPase was enriched in plastid preparations. The results are consistent with data from other graminaceous endosperms, suggesting that there are distinct plastidial and cytosolic isoforms of AGPase composed of different subunits. The plastidial isoform of AGPase from wheat endosperm is relatively insensitive to the allosteric regulators 3-phosphoglycerate and inorganic orthophos phate compared with plastidial AGPase from other species. Amyloplast AGPase showed no sensitivity to physiological concentrations of inorganic orthophosphate. 15 mM 3-phosphoglycerate caused no stimulation of the pyrophosphorolytic reaction, and only 2-fold stimulation of the ADPglucose synthesizing reaction.


Subject(s)
Nucleotidyltransferases/metabolism , Plastids/enzymology , Seeds/enzymology , Triticum/enzymology , Cytosol/enzymology , Enzyme Activation/drug effects , Glucose-1-Phosphate Adenylyltransferase , Glyceric Acids/pharmacology , Immunoblotting , Isoenzymes/metabolism , Kinetics , Phosphates/pharmacology , Seeds/growth & development , Triticum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...