Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 41(12): 3116-3124, 2022 12.
Article in English | MEDLINE | ID: mdl-36148933

ABSTRACT

Organic ultraviolet (UV) filters are used in a variety of cosmetic and personal care products (CPCPs), including sunscreens, due to their ability to absorb solar radiation. These UV filters can be washed down the drain through bathing, cleansing, or the laundering of clothing, therefore UV filters can enter the freshwater environment via wastewater treatment plant effluent, and so a freshwater risk assessment is necessary to establish the environmentally safe use of these important CPCP ingredients. In the present study, an environmental safety assessment for a UV filter of regulatory concern, octinoxate, was conducted. An established risk assessment framework designed specifically for CPCPs released to the freshwater environment in the United States was used for the assessment. A distribution of predicted environmental concentrations (PECs) representative of conditions across the region was calculated using the spatially resolved probabilistic exposure model iSTREEM. A review of available hazard data was conducted to derive a predicted no-effect concentration (PNEC). The safety assessment was conducted by comparing the PEC distribution to the PNEC. A substantial margin of safety was found between the 90th percentile PEC, which is representative of the reasonable worst-case environmental exposure, and the PNEC. Owing to this finding of negligible risk, further refinement of the risk assessment through the generation of experimental data or refinement of conservative assumptions is not prioritized. These results are critical for demonstrating the environmental safety of UV filters in the US freshwater environment and will help guide future work. Environ Toxicol Chem 2022;41:3116-3124. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Cosmetics , Water Pollutants, Chemical , United States , Fresh Water , Cinnamates , Sunscreening Agents , Risk Assessment , Water Pollutants, Chemical/analysis
2.
Environ Toxicol Chem ; 40(12): 3441-3464, 2021 12.
Article in English | MEDLINE | ID: mdl-34758162

ABSTRACT

There is growing interest in the environmental safety of ultraviolet (UV) filters found in cosmetic and personal care products (CPCPs). The CPCP industry is assessing appropriate environmental risk assessment (ERA) methods to conduct robust environmental safety assessments for these ingredients. Relevant and reliable data are needed for ERA, particularly when the assessment is supporting regulatory decision-making. In the present study, we apply a data evaluation approach to incorporate nonstandard toxicity data into the ERA process through an expanded range of reliability scores over commonly used approaches (e.g., Klimisch scores). The method employs an upfront screening followed by a data quality assessment based largely on the Criteria for Reporting and Evaluating Ecotoxicity Data (CRED) approach. The method was applied in a coral case study in which UV filter toxicity data was evaluated to identify data points potentially suitable for higher tier and/or regulatory ERA. This is an optimal case study because there are no standard coral toxicity test methods, and UV filter bans are being enacted based on findings reported in the current peer-reviewed data set. Eight studies comprising nine assays were identified; four of the assays did not pass the initial screening assessment. None of the remaining five assays received a high enough reliability score (Rn ) to be considered of decision-making quality (i.e., R1 or R2). Four assays were suitable for a preliminary ERA (i.e., R3 or R4), and one assay was not reliable (i.e., R6). These results highlight a need for higher quality coral toxicity studies, potentially through the development of standard test protocols, to generate reliable toxicity endpoints. These data can then be used for ERA to inform environmental protection and sustainability decision-making. Environ Toxicol Chem 2021;40:3441-3464. © 2021 Personal Care Products Council. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Anthozoa , Ecotoxicology , Animals , Reproducibility of Results , Risk Assessment/methods , Toxicity Tests
3.
Integr Environ Assess Manag ; 17(5): 951-960, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33913597

ABSTRACT

Organic ultraviolet (UV) filters are used in cosmetic and personal care products (CPCPs) and over-the-counter (OTC) sunscreens, due to their ability to absorb solar radiation. When OTC and CPCP ingredients are washed down the drain, they can then enter freshwaters that receive wastewater treatment plant effluents. This paper presents a freshwater environmental safety assessment of a key UV filter, oxybenzone, used in OTC sunscreens and CPCPs in the United States. Exposure was characterized using iSTREEM® , a spatially resolved aquatic exposure model developed for chemicals disposed of down the drain. iSTREEM® provides a comprehensive exposure assessment of oxybenzone concentrations in United States receiving waters through predicted environmental concentration (PEC) distributions representative of conditions across the region. A review of available hazard data was used to derive a predicted no-effect concentration (PNEC) using aquatic toxicity data and assessment factors. A safety assessment was conducted by comparing the PEC distribution with the PNEC. The results indicate that oxybenzone is of low concern and there is a significant margin of safety as the 90th percentile PEC is two orders of magnitude below the PNEC. These results are instrumental in demonstrating the environmental safety of key organic UV filters in the U.S. freshwater environment and will help prioritize future work. Integr Environ Assess Manag 2021;17:951-960. © 2021 Personal Care Products Council. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Benzophenones/toxicity , Risk Assessment , United States , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
4.
Environ Toxicol Chem ; 40(4): 967-988, 2021 04.
Article in English | MEDLINE | ID: mdl-33528837

ABSTRACT

There has been a rapid increase in public, political, and scientific interest regarding the impact of organic ultraviolet (UV) filters to coral reefs. Such filters are found in sunscreens and other consumer products and enter the aquatic environment via direct (i.e., recreational activities, effluents) or indirect (i.e., land runoff) pathways. This review summarizes the current state of the science regarding the concentration of organic UV filters in seawater and sediment near coral reef ecosystems and in coral tissues, toxicological data from early and adult life stages of coral species, and preliminary environmental risk characterizations. Up to 14 different organic UV filters in seawater near coral reefs have been reported across 12 studies, with the majority of concentrations in the nanograms per liter range. Nine papers report toxicological findings from no response to a variety of biological effects occurring in the micrograms per liter to milligrams per liter range, in part given the wide variations in experimental design and coral species and/or life stage used. This review presents key findings; scientific data gaps; flaws in assumptions, practice, and inference; and a number of recommendations for future studies to assess the environmental risk of organic UV filters to coral reef ecosystems. Environ Toxicol Chem 2021;40:967-988. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Anthozoa , Animals , Coral Reefs , Ecosystem , Seawater , Sunscreening Agents/toxicity
5.
Environ Toxicol Chem ; 39(1): 210-219, 2020 01.
Article in English | MEDLINE | ID: mdl-31597209

ABSTRACT

Down-the-drain exposure models provide a valuable tool for estimating environmental exposure to substances which are treated and discharged by municipal wastewater-treatment plants (WWTPs). Microplastics may enter WWTPs from consumer activities and disposal. An exposure framework was developed using the iSTREEM® model, which estimates spatially explicit concentrations of substances in riverine systems across the United States and portions of Ontario, Canada. One hundred simulations covering a range of WWTP removal and instream loss rates (proxy for net sedimentation) were incorporated into a Web-based visualization tool for user exploration of relative concentrations across simulations. Surface water concentrations specific to user-supplied tonnage were examined via interactive heat maps and cumulative distributions. Exploring the spatial aspect of iSTREEM results showed that modeling 90% WWTP removal and no instream loss resulted in 8.5% of the mass entering WWTPs discharged to marine estuaries (7.4%) or Great Lakes (1.1%) environments, with the remainder of the mass discharged (1.5%) in inland sinks or exiting the United States via rivers. Modeling an example instream loss of k = 0.1 d-1 (i.e., half-life = 7 d), terminal river segments contained 3.3% of influent mass (2.3% marine estuaries, 1.0% Great Lakes). Varying instream loss rates had substantial impacts on the total mass exported. The Web-based tool provided a user-based mechanism to visualize relative freshwater concentrations of microplastics across a large geographic area by varying simplified particle fate assumptions. Environ Toxicol Chem 2019;39:210-219. © 2019 SETAC.


Subject(s)
Environmental Monitoring/methods , Microplastics/analysis , Rivers/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Lakes/chemistry , Models, Theoretical , Ontario , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...