Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
3.
J Tissue Eng ; 14: 20417314231174609, 2023.
Article in English | MEDLINE | ID: mdl-37251735

ABSTRACT

While extracellular vesicles (EVs) continue to gain interest for therapeutic applications, their clinical translation is limited by a lack of optimal isolation methods. We sought to determine how universally applied isolation methods impact EV purity and yield. EVs were isolated by ultracentrifugation (UC), polyethylene glycol precipitation, Total Exosome Isolation Reagent, an aqueous two-phase system with and without repeat washes or size exclusion chromatography (SEC). EV-like particles could be detected for all isolation methods but varied in their purity and relative expression of surface markers (Alix, Annexin A2, CD9, CD63 and CD81). Assessments of sample purity were dependent on the specificity of characterisation method applied, with total particle counts and particle to protein (PtP) ratios often not aligning with quantitative measures of tetraspanin surface markers obtained using high-resolution nano-flow cytometry. While SEC resulted in the isolation of fewer particles with a relatively low PtP ratio (1.12 × 107 ± 1.43 × 106 vs highest recorded; ATPS/R 2.01 × 108 ± 1.15 × 109, p ⩽ 0.05), EVs isolated using this method displayed a comparatively high level of tetraspanin positivity (e.g. ExoELISA CD63⁺ particles; 1.36 × 1011 ± 1.18 × 1010 vs ATPS/R 2.58 × 1010 ± 1.92 × 109, p ⩽ 0.001). Results originating from an accompanying survey designed to evaluate pragmatic considerations surrounding method implementation (e.g. scalability and cost) identified that SEC and UC were favoured for overall efficiency. However, reservations were highlighted in the scalability of these methods, which could potentially hinder downstream therapeutic applications. In conclusion, variations in sample purity and yield were evident between isolation methods, while standard non-specific assessments of sample purity did not align with advanced quantitative high-resolution analysis of EV surface markers. Reproducible and specific assessments of EV purity will be critical for informing therapeutic studies.

4.
Mol Ther ; 31(5): 1251-1274, 2023 05 03.
Article in English | MEDLINE | ID: mdl-36869588

ABSTRACT

Regenerative medicine aims to promote the replacement of tissues lost to damage or disease. While positive outcomes have been observed experimentally, challenges remain in their clinical translation. This has led to growing interest in applying extracellular vesicles (EVs) to augment or even replace existing approaches. Through the engineering of culture environments or direct/indirect manipulation of EVs themselves, multiple avenues have emerged to modulate EV production, targeting, and therapeutic potency. Drives to modulate release using material systems or functionalize implants for improved osseointegration have also led to outcomes that could have real-world impact. The purpose of this review is to highlight advantages in applying EVs for the treatment of skeletal defects, outlining the current state of the art in the field and emphasizing avenues for further investigation. Notably, the review identifies inconsistencies in EV nomenclature and outstanding challenges in defining a reproducible therapeutic dose. Challenges also remain in the scalable manufacture of a therapeutically potent and pure EV product, with a need to address scalable cell sources and optimal culture environments. Addressing these issues will be critical if we are to develop regenerative EV therapies that meet the demands of regulators and can be translated from bench to bedside.


Subject(s)
Extracellular Vesicles , Orthopedics , Regenerative Medicine , Bone Development
5.
J Tissue Eng ; 14: 20417314231155114, 2023.
Article in English | MEDLINE | ID: mdl-36911574

ABSTRACT

Extracellular vesicles (EVs) continue to gain interest across the scientific community for diagnostic and therapeutic applications. As EV applications diversify, it is essential that researchers are aware of challenges, in particular the compatibility of EV isolation methods with downstream applications and their clinical translation. We report outcomes of the first cross-comparison study looking to determine parameters (EV source, starting volume, operator experience, application and implementation parameters such as cost and scalability) governing the selection of popular EV isolation methods across disciplines. Our findings highlighted an increased clinical focus, with 36% of respondents applying EVs in therapeutics and diagnostics. Data indicated preferential selection of ultracentrifugation for therapeutic applications, precipitation reagents in clinical settings and size exclusion chromatography for diagnostic applications utilising biofluids. Method selection was influenced by operator experience, with increased method diversity when EV research was not the respondents primary focus. Application and implementation criteria were indicated to be major influencers in method selection, with UC and SEC chosen for their abilities to process large and small volumes, respectively. Overall, we identified parameters influencing method selection across the breadth of EV science, providing a valuable overview of practical considerations for the effective translation of research outcomes.

6.
J Vis Exp ; (185)2022 07 26.
Article in English | MEDLINE | ID: mdl-35969098

ABSTRACT

Single particle characterization has become increasingly relevant for research into extracellular vesicles, progressing from bulk analysis techniques and first-generation particle analysis to comprehensive multi-parameter measurements such as nano-flow cytometry (nFCM). nFCM is a form of flow cytometry that utilizes instrumentation specifically designed for nano-particle analysis, allowing for thousands of EVs to be characterized per minute both with and without the use of staining techniques. High resolution side scatter (SS) detection allows for size and concentration to be determined for all biological particles larger than 45 nm, while simultaneous fluorescence (FL) detection identifies the presence of labeled markers and targets of interest. Labeled subpopulations can then be described in quantitative units of particles/mL or as a percentage of the total particles identified by side scatter. Here, EVs derived from conditioned cell culture media (CCM) are labeled with both a lipid dye, to identify particles with a membrane, and antibodies specific for CD9, CD63, and CD81 as common EV markers. Measurements of comparison material, a concentration standard and a size standard of silica nanospheres, as well as labeled sample material are analyzed in a 1-minute analysis. The software is then used to measure the concentration and size distribution profile of all particles, independent of labeling, before determining the particles that are positive for each of the labels. Simultaneous SS and FL detection can be utilized flexibly with many different EV sources and labeling targets, both external and internal, describing EV samples in a comprehensive and quantitative manner.


Subject(s)
Extracellular Vesicles , Biomarkers/metabolism , Extracellular Vesicles/metabolism , Flow Cytometry/methods , Silicon Dioxide , Staining and Labeling
7.
Front Bioeng Biotechnol ; 9: 757220, 2021.
Article in English | MEDLINE | ID: mdl-34765595

ABSTRACT

Extracellular Vesicles (EVs) are considered promising nanoscale therapeutics for bone regeneration. To date, EVs are typically procured from cells on 2D tissue culture plastic, an artificial environment that limits cell growth and does not replicate in situ biochemical or biophysical conditions. This study investigated the potential of 3D printed titanium scaffolds coated with hydroxyapatite to promote the therapeutic efficacy of osteoblast-derived EVs. Ti6Al4V titanium scaffolds with different pore sizes (500 and 1000 µm) and shapes (square and triangle) were fabricated by selective laser melting. A bone-mimetic nano-needle hydroxyapatite (nnHA) coating was then applied. EVs were procured from scaffold-cultured osteoblasts over 2 weeks and vesicle concentration was determined using the CD63 ELISA. Osteogenic differentiation of human bone marrow stromal cells (hBMSCs) following treatment with primed EVs was evaluated by assessing alkaline phosphatase activity, collagen production and calcium deposition. Triangle pore scaffolds significantly increased osteoblast mineralisation (1.5-fold) when compared to square architectures (P ≤ 0.001). Interestingly, EV yield was also significantly enhanced on these higher permeability structures (P ≤ 0.001), in particular (2.2-fold) for the larger pore structures (1000 µm). Furthermore osteoblast-derived EVs isolated from triangular pore scaffolds significantly increased hBMSCs mineralisation when compared to EVs acquired from square pore scaffolds (1.7-fold) and 2D culture (2.2-fold) (P ≤ 0.001). Coating with nnHA significantly improved osteoblast mineralisation (>2.6-fold) and EV production (4.5-fold) when compared to uncoated scaffolds (P ≤ 0.001). Together, these findings demonstrate the potential of harnessing bone-mimetic culture platforms to enhance the production of pro-regenerative EVs as an acellular tool for bone repair.

8.
J Extracell Vesicles ; 10(9): e12118, 2021 07.
Article in English | MEDLINE | ID: mdl-34262674

ABSTRACT

Extracellular vesicles (EVs) are emerging in tissue engineering as promising acellular tools, circumventing many of the limitations associated with cell-based therapies. Epigenetic regulation through histone deacetylase (HDAC) inhibition has been shown to increase differentiation capacity. Therefore, this study aimed to investigate the potential of augmenting osteoblast epigenetic functionality using the HDAC inhibitor Trichostatin A (TSA) to enhance the therapeutic efficacy of osteoblast-derived EVs for bone regeneration. TSA was found to substantially alter osteoblast epigenetic function through reduced HDAC activity and increased histone acetylation. Treatment with TSA also significantly enhanced osteoblast alkaline phosphatase activity (1.35-fold), collagen production (2.8-fold) and calcium deposition (1.55-fold) during osteogenic culture (P ≤ 0.001). EVs derived from TSA-treated osteoblasts (TSA-EVs) exhibited reduced particle size (1-05-fold) (P > 0.05), concentration (1.4-fold) (P > 0.05) and protein content (1.16-fold) (P ≤ 0.001) when compared to untreated EVs. TSA-EVs significantly enhanced the proliferation (1.13-fold) and migration (1.3-fold) of human bone marrow stem cells (hBMSCs) when compared to untreated EVs (P ≤ 0.05). Moreover, TSA-EVs upregulated hBMSCs osteoblast-related gene and protein expression (ALP, Col1a, BSP1 and OCN) when compared to cells cultured with untreated EVs. Importantly, TSA-EVs elicited a time-dose dependent increase in hBMSCs extracellular matrix mineralisation. MicroRNA profiling revealed a set of differentially expressed microRNAs from TSA-EVs, which were osteogenic-related. Target prediction demonstrated these microRNAs were involved in regulating pathways such as 'endocytosis' and 'Wnt signalling pathway'. Moreover, proteomics analysis identified the enrichment of proteins involved in transcriptional regulation within TSA-EVs. Taken together, our findings suggest that altering osteoblasts' epigenome accelerates their mineralisation and promotes the osteoinductive potency of secreted EVs partly due to the delivery of pro-osteogenic microRNAs and transcriptional regulating proteins. As such, for the first time we demonstrate the potential to harness epigenetic regulation as a novel engineering approach to enhance EVs therapeutic efficacy for bone repair.


Subject(s)
Bone Marrow Cells/cytology , Epigenesis, Genetic , Extracellular Vesicles/transplantation , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Osteoblasts/cytology , Osteogenesis/drug effects , Acetylation , Animals , Cells, Cultured , Extracellular Vesicles/genetics , Gene Expression Regulation , Histone Deacetylases/metabolism , Humans , Mice , MicroRNAs , Osteoblasts/drug effects
9.
J Tissue Eng ; 12: 20417314211022092, 2021.
Article in English | MEDLINE | ID: mdl-34104390

ABSTRACT

Extracellular vesicles (EVs) hold value as accessible biomarkers for understanding cellular differentiation and related pathologies. Herein, EV biomarkers in models of skeletal muscle dormancy and differentiation have been comparatively profiled using Raman spectroscopy (RS). Significant variations in the biochemical fingerprint of EVs were detected, with an elevation in peaks associated with lipid and protein signatures during early myogenic differentiation (day 2). Principal component analysis revealed a clear separation between the spectra of EVs derived from myogenic and senescent cell types, with non-overlapping interquartile ranges and population median. Observations aligned with nanoparticle tracking data, highlighting a significant early reduction in EV concentration in senescent myoblast cultures as well as notable variations in EV morphology and diameter. As differentiation progressed physical and biochemical differences in the properties of EVs became less pronounced. This study demonstrates the applicability of RS as a high-resolution analytical method for profiling biochemical changes in EVs during early myogenesis.

10.
Adv Drug Deliv Rev ; 173: 479-491, 2021 06.
Article in English | MEDLINE | ID: mdl-33862168

ABSTRACT

Extracellular vesicles (EVs) are complex nanoparticles required for the intercellular transfer of diverse biological cargoes. Unlike synthetic nanoparticles, EVs may provide a natural platform for the enhanced targeting and functional transfer of therapeutics across complex and often impenetrable biological boundaries (e.g. the blood-brain barrier or the matrix of densely organised tumours). Consequently, there is considerable interest in utilising EVs as advanced drug delivery systems for the treatment of a range of challenging pathologies. Within the past decade, efforts have focused on providing standard minimal requirements for conducting basic EV research. However, no standard reporting framework has been established governing the therapeutic loading of EVs for drug delivery applications. The purpose of this review is to critically evaluate progress in the field, providing an initial set of guidelines that can be applied as a benchmark to enhance reproducibility and increase the likelihood of translational outcomes.


Subject(s)
Extracellular Vesicles/metabolism , Drug Carriers/chemistry , Drug Carriers/metabolism , Drug Delivery Systems , Extracellular Vesicles/chemistry , Humans
13.
Future Sci OA ; 5(4): FSO391, 2019 May 03.
Article in English | MEDLINE | ID: mdl-31114711

ABSTRACT

In recent years there has been a rapid rise in interest for the application of probiotic supplements to act as mediators in health and disease. This appeal is predominantly due to ever-increasing evidence of the interaction of the microbiota and pathophysiological processes of disease within the human host. This narrative review considers the current landscape of the probiotic industry and its research, and discusses current pitfalls in the lack of translation from laboratory science to clinical application. Future considerations into how industry and academia must adapt probiotic research to maximize success are suggested, including more targeted application of probiotic strains dependent on individual capabilities as well as application of multiple advanced analytical technologies to further understand and accelerate microbiome science.

14.
Article in English | MEDLINE | ID: mdl-31119130

ABSTRACT

Osteoblast-derived extracellular vesicles (EV) are a collection of secreted (sEVs) and matrix-bound nanoparticles that function as foci for mineral nucleation and accumulation. Due to the fact sEVs can be isolated directly from the culture medium of mineralizing osteoblasts, there is growing interest their application regenerative medicine. However, at present therapeutic advancements are hindered by a lack of understanding of their precise temporal contribution to matrix mineralization. This study advances current knowledge by temporally aligning sEV profile and protein content with mineralization status. sEVs were isolated from mineralizing primary osteoblasts over a period of 1, 2, and 3 weeks. Bimodal particle distributions were observed (weeks 1 and 3: 44 and 164 nm; week 2: 59 and 220 nm), indicating a heterogeneous population with dimensions characteristic of exosome- (44 and 59 nm) and microvesicle-like (164 and 220 nm) particles. Proteomic characterization by liquid chromatography tandem-mass spectrometry (LC-MS/MS) revealed a declining correlation in EV-localized proteins as mineralization advanced, with Pearson correlation-coefficients of 0.79 (week 1 vs. 2), 0.6 (2 vs. 3) and 0.46 (1 vs. 3), respectively. Principal component analysis (PCA) further highlighted a time-dependent divergence in protein content as mineralization advanced. The most significant variations were observed at week 3, with a significant (p < 0.05) decline in particle concentration, visual evidence of EV rupture and enhanced mineralization. A total of 116 vesicle-localized proteins were significantly upregulated at week 3 (56% non-specifically, 19% relative to week 1, 25% relative to week 2). Gene ontology enrichment analysis of these proteins highlighted overrepresentation of genes associated with matrix organization. Of note, increased presence of phospholipid-binding and calcium channeling annexin proteins (A2, A5, and A6) indicative of progressive variations in the nucleational capacity of vesicles, as well as interaction with the surrounding ECM. We demonstrate sEV-mediated mineralization is dynamic process with variations in vesicle morphology and protein content having a potential influence on developmental changes matrix organization. These findings have implications for the selection and application of EVs for regenerative applications.

15.
Adv Healthc Mater ; 8(9): e1801604, 2019 05.
Article in English | MEDLINE | ID: mdl-30838810

ABSTRACT

Extracellular vesicles (EVs) are emerging as a promising alternative approach to cell-therapies. However, to realize the potential of these nanoparticles as new regenerative tools, healthcare materials that address the current limitations of systemic administration need to be developed. Here, two technologies for controlling the structure of alginate based microgel suspensions are used to develop sustained local release of EVs, in vitro. Microparticles formed using a shearing technique are compared to those manufactured using vibrational technology, resulting in either anisotropic sheet-like or spheroid particles, respectively. EVs harvested from preosteoblasts are isolated using differential ultracentrifugation and successfully loaded into the two systems, while maintaining their structures. Promisingly, in addition to exhibiting even EV distribution and high stability, controlled release of vesicles from both structures is exhibited, in vitro, over the 12 days studied. Interestingly, a significantly greater number of EVs are released from the suspensions formed by shearing (69.9 ± 10.5%), compared to the spheroids (35.1 ± 7.6%). Ultimately, alterations to the hydrogel physical structures have shown to tailor nanoparticle release while simultaneously providing ideal material characteristics for clinical injection. Thus, the sustained release mechanisms achieved through manipulating the formation of such biomaterials provide a key to unlocking the therapeutic potential held within EVs.


Subject(s)
Extracellular Vesicles/chemistry , Hydrogels/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Animals , Blotting, Western , Cell Line , Mice , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure
16.
J Tissue Eng ; 9: 2041731418810130, 2018.
Article in English | MEDLINE | ID: mdl-30450187

ABSTRACT

Extracellular vesicles comprise a heterogenous population of exosomes and microvesicles that have critical roles in intercellular signalling and tissue development. These complex particles have been implicated as mediators of the therapeutic effects of stem cells via the transfer of an assorted cargo of proteins and nucleic acids, which can modulate inflammation and enhance endogenous regeneration in a range of tissues. In addition, extracellular vesicles have the capacity to be loaded with therapeutic molecules for targeted delivery of pharmaceuticals. The versatility, biostability and biocompatibility of extracellular vesicles make them appealing for regenerative medicine and may endow considerable advantages over single molecule approaches. Furthermore, since production can be optimised and assessed ex vivo, extracellular vesicles present a decreased risk of neoplastic transformation when compared with cell-based methods. To date, the contribution of vesicles to tissue development has perhaps been most comprehensively defined within hard tissues, such as endochondral bone, where they were first identified in 1969 and henceforth referred to as matrix vesicles. Within developing bone, vesicles function as vehicles for the delivery of pro-osteogenic factors and initiate early nucleational events necessary for matrix mineralisation. However, advancement in our understanding of the biogenesis and characterisation of matrix vesicles has occurred largely in parallel to associated developments in wider extracellular vesicle biology. As such, there is a requirement to align current understanding of matrix vesicle-mediated mineralisation within the context of an evolving literature surrounding exosomes and microvesicles. In this review, we present an overview of current progress and opinion surrounding the application of vesicles in regenerative medicine with a primary focus on their potential as an acellular approach for enhancing hard tissue regeneration. This is balanced with an assessment of areas where further development is required to maximise their application for regenerative medicine.

17.
Adv Healthc Mater ; 7(7): e1701166, 2018 04.
Article in English | MEDLINE | ID: mdl-29325202

ABSTRACT

A new bone augmenting material is reported, which is formed from calcium-loaded hydrogel-based spheres. On immersion of these spheres in a physiological medium, they become surrounded with a sheath of precipitate, which ruptures due to a build-up in osmotic pressure. This results in the formation of mineral tubes that protrude from the sphere surface. When brought into close contact with one another, these spheres become fused through the entanglement and subsequent interstitial mineralization of the mineral tubules. The tubular calcium phosphate induces the expression of osteogenic genes (runt-related transcription factor 2 (RUNX2), transcription factor SP7 (SP7), collagen type 1 alpha 1 (COL1A1), and bone gamma-carboxyglutamic acid-containing protein (BGLAP)) and promotes the formation of mineral nodules in preosteoblast cultures comparable to an apatitic calcium phosphate phase. Furthermore, alkaline phosphatase (ALP) is significantly upregulated in the presence of tubular materials after 10 d in culture compared with control groups (p < 0.001) and sintered apatite (p < 0.05). This is the first report of a bioceramic material that is formed in its entirety in situ and is therefore likely to provide a better proxy for biological mineral than other existing synthetic alternatives to bone grafts.


Subject(s)
Calcification, Physiologic/drug effects , Calcium Phosphates , Cell Differentiation/drug effects , Hydrogels , Osteoblasts/metabolism , Osteogenesis/drug effects , Animals , Antigens, Differentiation/biosynthesis , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacokinetics , Calcium Phosphates/pharmacology , Cell Line , Humans , Hydrogels/chemistry , Hydrogels/pharmacokinetics , Hydrogels/pharmacology , Mice , Osteoblasts/cytology
18.
J Tissue Eng Regen Med ; 12(1): e355-e367, 2018 01.
Article in English | MEDLINE | ID: mdl-27696748

ABSTRACT

Heterotopic ossification (HO) is a debilitating condition defined by the rapid formation of bone in soft tissues. What makes HO fascinating is first the rate at which bone is deposited, and second the fact that this bone is structurally and compositionally similar to that of a healthy adult. If the mechanisms governing HO are understood, they have the potential to be exploited for the development of potent osteoinductive therapies. With this aim, a tissue-engineered skeletal muscle was used model to better understand the role of inflammation on this debilitating phenomenon. It was shown that myoblasts could be divided into two distinct populations: myogenic cells and undifferentiated 'reserve' cells. Gene expression analysis of myogenic and osteoregulatory markers confirmed that 'reserve' cells were primed for osteogenic differentiation but had a reduced capacity for myogenesis. Osteogenic differentiation was significantly enhanced in the presence of platelet-derived growth factor (PDGF)-BB and bone morphogenetic protein 2 (BMP2), and correlated with conversion to a Sca-1+ /CD73+ phenotype. Alizarin red staining showed that PDGF-BB promoted significantly more mineral deposition than BMP2. Finally, it was shown that PDGF-induced mineralization was blocked in the presence of the pro-inflammatory cytokines tumour necrosis factor-α and interleukin 1. In conclusion, the present study identified that PDGF-BB is a potent osteoinductive factor in a model of tissue-engineered skeletal muscle, and that the osteogenic capacity of this protein was modulated in the presence of pro-inflammatory cytokines. These findings reveal a possible mechanism by which HO develops following trauma. Importantly, these findings have implications for the induction and control of bone formation for regenerative medicine. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Models, Biological , Ossification, Heterotopic/physiopathology , Osteogenesis/drug effects , Platelet-Derived Growth Factor/pharmacology , Tissue Engineering , Animals , Calcification, Physiologic/drug effects , Cell Differentiation , Cell Line , Cytokines/metabolism , Inflammation Mediators/metabolism , Mice , Muscle, Skeletal/physiology , Principal Component Analysis , Rats
19.
J Tissue Eng ; 9: 2041731418810093, 2018.
Article in English | MEDLINE | ID: mdl-30627418

ABSTRACT

Disseminated breast cancer cells have the capacity to metastasise to the bone marrow and reside in a dormant state within the mesenchymal stem cell niche. Research has focussed on paracrine signalling factors, such as soluble proteins, within the microenvironment. However, it is now clear extracellular vesicles secreted by resident mesenchymal stem cells into this microenvironment also play a key role in the initiation of dormancy. Dormancy encourages reduced cell proliferation and migration, while upregulating cell adhesion, thus retaining the cancer cells within the bone marrow microenvironment. Here, MCF7 breast cancer cells were treated with mesenchymal stem cell-derived extracellular vesicles, resulting in reduced migration in two-dimensional and three-dimensional culture, with reduced cell proliferation and enhanced adhesion, collectively supporting cancer cell dormancy.

20.
Front Physiol ; 8: 194, 2017.
Article in English | MEDLINE | ID: mdl-28421001

ABSTRACT

Heterotopic ossification (HO) is characterized by the formation of bone at atypical sites. This type of ectopic bone formation is most prominent in skeletal muscle, most frequently resulting as a consequence of physical trauma and associated with aberrant tissue regeneration. The condition is debilitating, reducing a patient's range of motion and potentially causing severe pathologies resulting from nerve and vascular compression. Despite efforts to understand the pathological processes governing HO, there remains a lack of consensus regarding the micro-environmental conditions conducive to its formation, and attempting to define the balance between muscle regeneration and pathological ossification remains complex. The development of HO is thought to be related to a complex interplay between factors released both locally and systemically in response to trauma. It develops as skeletal muscle undergoes significant repair and regeneration, and is likely to result from the misdirected differentiation of endogenous or systemically derived progenitors in response to biochemical and/or environmental cues. The process can be sequentially delineated by the presence of inflammation, tissue breakdown, adipogenesis, hypoxia, neo-vasculogenesis, chondrogenesis and ossification. However, exactly how each of these stages contributes to the formation of HO is at present not well understood. Our previous review examined the cellular contribution to HO. Therefore, the principal aim of this review will be to comprehensively outline changes in the local tissue micro-environment following trauma, and identify how these changes can alter the balance between skeletal muscle regeneration and ectopic ossification. An understanding of the mechanisms governing this condition is required for the development and advancement of HO prophylaxis and treatment, and may even hold the key to unlocking novel methods for engineering hard tissues.

SELECTION OF CITATIONS
SEARCH DETAIL
...