Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 50(3): 791-798, 2021 May.
Article in English | MEDLINE | ID: mdl-33826154

ABSTRACT

Intensive vegetable cropping systems rely heavily on nitrogen (N) inputs from multiple synthetic and organic fertilizer applications. The majority of applied N is lost to the environment through numerous pathways, including as nitrous oxide (N2 O). A field trial was conducted to examine the opportunities to reduce N input in an intensive vegetable system without compromising yield. Treatments applied were control (no N), manure (M, 408 kg N ha-1 from chicken manure), grower practice (GP, 408 kg N ha-1 from chicken manure + 195 kg N ha-1 from fertilizer), and 2/3 GP (two-thirds of the total N input in GP), all with and without 3,4-dimethylpyrazole phosphate (DMPP). Nitrogen recovery in the GP treatment was determined using 15 N-labeled fertilizer. Using only manure significantly lowered celery (Apium graveolens L.) yield and apparent N use efficiency (ANUE) compared with GP. Reducing N input by one-third did not affect yield or ANUE. Use of DMPP increased ANUE despite no yield improvement. More than 50% of the applied N in the GP treatment was lost to the environment, with almost 10 kg N ha-1 emitted as N2 O over the season, which was 67 times more than from the control. Reducing the N input by one-third or using manure only reduced N2 O emissions by more than 70% relative to GP. This study shows that there is a clear opportunity to reduce N input and N2 O emissions in high-fertilizer-input vegetable systems without compromising vegetable yield.


Subject(s)
Nitrogen , Vegetables , Agriculture , China , Fertilizers/analysis , Manure , Nitrous Oxide/analysis , Soil
2.
Sci Total Environ ; 644: 1531-1535, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30743866

ABSTRACT

Urease and nitrification inhibitors are designed to mitigate ammonia (NH3) volatilization and nitrous oxide (N2O) emission, but uncertainties on the agronomic and economic benefits of these inhibitors prevent their widespread adoption in pasture systems, particularly in subtropical regions where no such information is available. Here we report a field experiment that was conducted in a subtropical pasture in Queensland, Australia to examine whether the use of the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT, applied as Green UreaNV®) and the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP, applied as Urea with ENTEC®) is environmentally, agronomically and economically viable. We found that Green UreaNV® and Urea with ENTEC® decreased NH3 volatilization and N2O emission by 44 and 15%, respectively, compared to granular urea. Pasture biomass and nitrogen (N) uptake were increased by 22-36% and 23-32%, respectively, with application of the inhibitors compared to granular urea. A simple economic assessment indicates that the fertilizer cost for pasture production was 5.4, 4.4 and 6.0 Australian cents per kg dry matter for urea, Green UreaNV® and Urea with ENTEC®, respectively, during the experimental period. The mitigation of N loss using the inhibitors can reduce the environmental cost associated with pasture production. These results suggest that the use of these inhibitors can provide environmental, agronomic and economic benefits to a subtropical pasture.


Subject(s)
Agriculture/methods , Air Pollution/prevention & control , Ammonia/analysis , Fertilizers , Nitrous Oxide/analysis , Urease/chemistry , Air Pollution/analysis , Nitrification , Queensland
3.
Sci Rep ; 5: 8208, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25644694

ABSTRACT

The emission and mitigation of nitrous oxide (N2O) from high nitrogen (N) vegetable systems is not well understood. Nitrification inhibitors are widely used to decrease N2O emissions in many cropping systems. However, most N2O flux measurements and inhibitor impacts have been made with small chambers and have not been investigated at a paddock-scale using micrometeorological techniques. We quantified N2O fluxes over a four ha celery paddock using open-path Fourier Transform Infrared spectroscopy in conjunction with a backward Lagrangian stochastic model, in addition to using a closed chamber technique. The celery crop was grown on a sandy soil in southern Victoria, Australia. The emission of N2O was measured following the application of chicken manure and N fertilizer with and without the application of a nitrification inhibitor 3, 4-dimethyl pyrazole phosphate (DMPP). The two techniques consistently demonstrated that DMPP application reduced N2O emission by 37-44%, even though the N2O fluxes measured by a micrometeorological technique were more than 10 times higher than the small chamber measurements. The results suggest that nitrification inhibitors have the potential to mitigate N2O emission from intensive vegetable production systems, and that the national soil N2O emission inventory assessments and modelling predictions may vary with gas measurement techniques.


Subject(s)
Apium/metabolism , Nitrogen/metabolism , Nitrous Oxide/analysis , Ammonium Compounds/analysis , Ammonium Compounds/metabolism , Apium/drug effects , Apium/growth & development , Nitrogen/chemistry , Nitrous Oxide/metabolism , Pyrazoles/pharmacology , Soil/chemistry , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...