Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 896: 165294, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37414171

ABSTRACT

Significant advancements have been made in understanding the genetic regulation of nitrogen use efficiency (NUE) and identifying crucial NUE genes in rice. However, the development of rice genotypes that simultaneously exhibit high yield and NUE has lagged behind these theoretical advancements. The grain yield, NUE, and greenhouse gas (GHG) emissions of newly-bred rice genotypes under reduced nitrogen application remain largely unknown. To address this knowledge gap, field experiments were conducted, involving 80 indica (14 to 19 rice genotypes each year in Wuxue, Hubei) and 12 japonica (8 to 12 rice genotypes each year in Yangzhou, Jiangsu). Yield, NUE, agronomy, and soil parameters were assessed, and climate data were recorded. The experiments aimed to assess genotypic variations in yield and NUE among these genotypes and to investigate the eco-physiological basis and environmental impacts of coordinating high yield and high NUE. The results showed significant variations in yield and NUE among the genotypes, with 47 genotypes classified as moderate-high yield with high NUE (MHY_HNUE). These genotypes demonstrated the higher yields and NUE levels, with 9.6 t ha-1, 54.4 kg kg-1, 108.1 kg kg-1, and 64 % for yield, NUE for grain and biomass production, and N harvest index, respectively. Nitrogen uptake and tissue concentration were key drivers of the relationship between yield and NUE, particularly N uptake at heading and N concentrations in both straw and grain at maturity. Increase in pre-anthesis temperature consistently lowered yield and NUE. Genotypes within the MHY_HNUE group exhibited higher methane emissions but lower nitrous oxide emissions compared to those in the low to middle yield and NUE group, resulting in a 12.8 % reduction in the yield-scaled greenhouse gas balance. In conclusion, prioritizing crop breeding efforts on yield and resource use efficiency, as well as developing genotypes resilient to high temperatures with lower GHGs, can mitigate planetary warming.


Subject(s)
Greenhouse Gases , Oryza , Nitrogen , Oryza/genetics , Fertilizers/analysis , Plant Breeding , Soil , Agriculture/methods , Nitrous Oxide/analysis , Edible Grain/chemistry , Genotype
2.
Food Energy Secur ; 11(4): e404, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36582471

ABSTRACT

An evolving green agenda as the UK seeks to achieve 'net zero' in greenhouse gas emissions by 2050, coupled with our new trading relationship with the European Union, is resulting in new government policies, which will be disruptive to Britain's traditional food and farming practices. These policies encourage sustainable farming and land-sparing to restore natural habitats and will provide an opportunity to address issues such as high emissions of GHGs and dwindling biodiversity resulting from many intensive agricultural practices. To address these and other food challenges such as global conflicts and health issues, Britain will need a revolution in its food system. The aim of this paper is to make the case for such a food revolution where additional healthy food for the UK population is produced in-country in specialised production units for fruits and vegetables developed on sites previously considered unsuitable for crop production. High crop productivity can be achieved in low-cost controlled environments, making extensive use of novel crop science and modern controlled-environment technology. Such systems must be operated with very limited environmental impact. In recent years, growth in the application of plasticulture in UK horticulture has driven some increases in crop yield, quality and value. However, the environmental cost of plastic production and plastic pollution is regarded as a generational challenge that faces the earth system complex. The distribution of plastic waste is ubiquitous, with a significant pollution load arising from a range of agricultural practices. The primary receptor of agriplastic pollution is agricultural soil. Impacts of microplastics on crop productivity and quality and also on human health are only now being investigated. This paper explores the possibility that we can mitigate the adverse environmental effects of agriplastics and thereby exploit the potential of plasticulture to enhance the productivity and positive health impact of UK horticulture.

3.
New Phytol ; 226(1): 244-253, 2020 04.
Article in English | MEDLINE | ID: mdl-31536638

ABSTRACT

Nutrient distribution and neighbours can impact plant growth, but how neighbours shape root-foraging strategy for nutrients is unclear. Here, we explore new patterns of plant foraging for nutrients as affected by neighbours to improve nutrient acquisition. Maize (Zea mays) was grown alone (maize), or with maize (maize/maize) or faba bean (Vicia faba) (maize/faba bean) as a neighbour on one side and with or without a phosphorus (P)-rich zone on the other in a rhizo-box experiment. Maize demonstrated root avoidance in maize/maize, with reduced root growth in 'shared' soil, and increased growth away from its neighbours. Conversely, maize proliferated roots in the proximity of neighbouring faba bean roots that had greater P availability in the rhizosphere (as a result of citrate and acid phosphatase exudation) compared with maize roots. Maize proliferated more roots, but spent less time to reach, and grow out of, the P patches away from neighbours in the maize/maize than in the maize/faba bean experiment. Maize shoot biomass and P uptake were greater in the heterogeneous P treatment with maize/faba bean than with maize/maize system. The foraging strategy of maize roots is an integrated function of heterogeneous distribution of nutrients and neighbouring plants, thus improving nutrient acquisition and maize growth. Understanding the foraging patterns is critical for optimizing nutrient management in crops.


Subject(s)
Phosphorus , Plant Roots , Zea mays , Nutrients , Phosphorus/metabolism , Soil
4.
J Exp Bot ; 71(4): 1249-1264, 2020 02 19.
Article in English | MEDLINE | ID: mdl-31750924

ABSTRACT

Fruit is important for human health, and applying deficit irrigation in fruit production is a strategy to regulate fruit quality and support environmental sustainability. Responses of different fruit quality variables to deficit irrigation have been widely documented, and much progress has been made in understanding the mechanisms of these responses. We review the effects of water shortage on fruit water accumulation considering water transport from the parent plant into the fruit determined by hydraulic properties of the pathway (including xylem water transport and transmembrane water transport regulated by aquaporins) and the driving force for water movement. We discuss water relations and solute metabolism that affect the main fruit quality variables (e.g. size, flavour, nutrition, and firmness) at the cellular level under water shortage. We also summarize the most recent advances in the understanding of responses of the main fruit quality variables to water shortage, considering the effects of variety, the severity of water deficit imposed, and the developmental stage of the fruit. We finally identify knowledge gaps and suggest avenues for future research. This review provides new insights into the stress physiology of fleshy fruit, which will be beneficial for the sustainable production of high-quality fruit under deficit irrigation.


Subject(s)
Solanum lycopersicum , Fruit , Water , Water Insecurity , Xylem
5.
Plant Cell Environ ; 43(3): 563-578, 2020 03.
Article in English | MEDLINE | ID: mdl-31721225

ABSTRACT

Plants can modify xylem anatomy and hydraulic properties to adjust to water status. Elevated [CO2 ] can increase plant water potential via reduced stomatal conductance and water loss. This raises the question of whether elevated [CO2 ], which thus improves plant water status, will reduce the impacts of soil water deficit on xylem anatomy and hydraulic properties of plants. To analyse the impacts of water and [CO2 ] on maize stem xylem anatomy and hydraulic properties, we exposed potted maize plants to varying [CO2 ] levels (400, 700, 900, and 1,200 ppm) and water levels (full irrigation and deficit irrigation). Results showed that at current [CO2 ], vessel diameter, vessel roundness, stem cross-section area, specific hydraulic conductivity, and vulnerability to embolism decreased under deficit irrigation; yet, these impacts of deficit irrigation were reduced at elevated [CO2 ]. Across all treatments, midday stem water potential was tightly correlated with xylem traits and displayed similar responses. A distinct trade-off between efficiency and safety in stem xylem water transportation in response to water deficit was observed at current [CO2 ] but not observed at elevated [CO2 ]. The results of this study enhance our knowledge of plant hydraulic acclimation under future climate environments and provide insights into trade-offs in xylem structure and function.


Subject(s)
Carbon Dioxide/pharmacology , Plant Stems/physiology , Water/metabolism , Xylem/anatomy & histology , Zea mays/physiology , Plant Leaves/drug effects , Plant Leaves/physiology , Plant Stems/drug effects , Xylem/drug effects , Zea mays/drug effects , Zea mays/growth & development
6.
Front Psychol ; 9: 1277, 2018.
Article in English | MEDLINE | ID: mdl-30104989

ABSTRACT

Five evidence-based taxonomies of everyday sounds frequently reported in the soundscape literature have been generated. An online sorting and category-labeling method that elicits rather than prescribes descriptive words was used. A total of N = 242 participants took part. The main categories of the soundscape taxonomy were people, nature, and manmade, with each dividing into further categories. Sounds within the nature and manmade categories, and two further individual sound sources, dogs, and engines, were explored further by repeating the procedure using multiple exemplars. By generating multidimensional spaces containing both sounds and the spontaneously generated descriptive words the procedure allows for the interpretation of the psychological dimensions along which sounds are organized. This reveals how category formation is based upon different cues - sound source-event identification, subjective-states, and explicit assessment of the acoustic signal - in different contexts. At higher levels of the taxonomy the majority of words described sound source-events. In contrast, when categorizing dog sounds a greater proportion of the words described subjective-states, and valence and arousal scores of these words correlated with their coordinates along the first two dimensions of the data. This is consistent with valence and arousal judgments being the primary categorization strategy used for dog sounds. In contrast, when categorizing engine sounds a greater proportion of the words explicitly described the acoustic signal. The coordinates of sounds along the first two dimensions were found to correlate with fluctuation strength and sharpness, consistent with explicit assessment of acoustic signal features underlying category formation for engine sounds. By eliciting descriptive words the method makes explicit the subjective meaning of these judgments based upon valence and arousal and acoustic properties, and the results demonstrate distinct strategies being spontaneously used to categorize different types of sounds.

7.
Glob Chang Biol ; 24(8): 3560-3574, 2018 08.
Article in English | MEDLINE | ID: mdl-29604158

ABSTRACT

Introduction of high-performing crop cultivars and crop/soil water management practices that increase the stomatal uptake of carbon dioxide and photosynthesis will be instrumental in realizing the United Nations Sustainable Development Goal (SDG) of achieving food security. To date, however, global assessments of how to increase crop yield have failed to consider the negative effects of tropospheric ozone, a gaseous pollutant that enters the leaf stomatal pores of plants along with carbon dioxide, and is increasing in concentration globally, particularly in rapidly developing countries. Earlier studies have simply estimated that the largest effects are in the areas with the highest ozone concentrations. Using a modelling method that accounts for the effects of soil moisture deficit and meteorological factors on the stomatal uptake of ozone, we show for the first time that ozone impacts on wheat yield are particularly large in humid rain-fed and irrigated areas of major wheat-producing countries (e.g. United States, France, India, China and Russia). Averaged over 2010-2012, we estimate that ozone reduces wheat yields by a mean 9.9% in the northern hemisphere and 6.2% in the southern hemisphere, corresponding to some 85 Tg (million tonnes) of lost grain. Total production losses in developing countries receiving Official Development Assistance are 50% higher than those in developed countries, potentially reducing the possibility of achieving UN SDG2. Crucially, our analysis shows that ozone could reduce the potential yield benefits of increasing irrigation usage in response to climate change because added irrigation increases the uptake and subsequent negative effects of the pollutant. We show that mitigation of air pollution in a changing climate could play a vital role in achieving the above-mentioned UN SDG, while also contributing to other SDGs related to human health and well-being, ecosystems and climate change.


Subject(s)
Air Pollution/adverse effects , Climate Change , Ozone/chemistry , Ozone/toxicity , Triticum/drug effects , Carbon Dioxide/analysis , Environmental Monitoring , Humans , Photosynthesis/drug effects , Plant Leaves/growth & development , Rain , Triticum/growth & development
8.
J Exp Bot ; 68(21-22): 5883-5894, 2017 12 16.
Article in English | MEDLINE | ID: mdl-29126265

ABSTRACT

A better understanding of physiological responses of crops to drought stress is important for ensuring sustained crop productivity under climate change. Here, we studied the effect on 15-day-old maize (Zea mays L.) plants of a 6 d non-lethal period of soil drying [soil water potential (SWP) decreased from -0.20 MPa to -0.81 MPa]. Root growth was initially stimulated during drying (when SWP decreased from -0.31 MPa to -0.38 MPa, compared with -0.29 MPa in well-watered pots), followed by inhibition during Days 5-6 (SWP from -0.63 MPa to -0.81 MPa). Abscisic acid (ABA) in the root began to accumulate as the root water potential declined during Days 2-3. Leaf elongation was inhibited from Day 4 (SWP less than -0.51 MPa), just after leaf ABA content began to increase, but coinciding with a decline in leaf water potential. The stomatal conductance was restricted earlier in the younger leaf (fourth) (on Day 3) than in the older leaf (third). The ethylene content of leaves and roots decreased during drying, but after the respective increase in ABA contents. This work identified critical timing of hydraulic and chemical changes at the onset of soil drying, which can be important in initiating early stomatal and growth responses to drought.


Subject(s)
Abscisic Acid/metabolism , Desiccation , Ethylenes/metabolism , Plant Growth Regulators/metabolism , Plant Stomata/physiology , Soil/chemistry , Zea mays/physiology , Droughts , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Roots/growth & development , Plant Roots/physiology , Zea mays/growth & development
9.
Front Plant Sci ; 8: 1493, 2017.
Article in English | MEDLINE | ID: mdl-28890725

ABSTRACT

Exogenous abscisic acid (ABA) is known to either stimulate or inhibit root growth, depending on its concentration. In this study, the roles of ethylene and auxin in this biphasic effect of ABA on root elongation were investigated using chemical inhibitors and mutants. Inhibitors of ethylene perception and biosynthesis and an auxin influx inhibitor were all found to block the inhibitory effect of high ABA concentrations, but not the stimulatory effect of low ABA concentrations. In addition, three ethylene-insensitive mutants (etr1-1, ein2-1, and ein3-1), two auxin influx mutants (aux1-7, aux1-T) and an auxin-insensitive mutant (iaa7/axr2-1) were all insensitive to the inhibitory effect of high ABA concentrations. In the case of the stimulatory effect of low ABA concentrations, it was blocked by two different auxin efflux inhibitors and was less pronounced in an auxin efflux mutant (pin2/eir1-1) and in the iaa7/axr2-1 auxin-insensitive mutant. Thus it appears that the stimulatory effect seen at low ABA concentrations is via an ethylene-independent pathway requiring auxin signalling and auxin efflux through PIN2/EIR1, while the inhibitory effect at high ABA concentrations is via an ethylene-dependent pathway requiring auxin signalling and auxin influx through AUX1.

10.
J Exp Bot ; 68(9): 2413-2424, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28419363

ABSTRACT

Pot-based phenotyping of drought response sometimes maintains suboptimal soil water content by applying high-frequency deficit irrigation (HFDI). We examined the effect of this treatment on water and abscisic acid (ABA) relations of two species (Helianthus annuus and Populus nigra). Suboptimal soil water content was maintained by frequent irrigation, and compared with the effects of withholding water and with adequate irrigation. At the same average whole-pot soil moisture, frequent irrigation resulted in larger soil water content gradients, lower root and xylem ABA concentrations ([X-ABA]), along with higher transpiration rates or stomatal conductance, compared with plants from which water was withheld. [X-ABA] was not uniquely related to transpiration rate or stomatal conductance, as frequently irrigated plants showed partial stomatal closure compared with well-watered controls, without differing in [X-ABA] and, in H. annuus, [ABA]leaf. In two P. nigra genotypes differing in leaf area, the ratio between leaf area and root weight in the upper soil layer influenced the soil water content of this layer. Maintaining suboptimal soil water content alters water relations, which might become dependent on root distribution and leaf area, which influences soil water content gradients. Thus genotypic variation in 'drought tolerance' derived from phenotyping platforms must be carefully interpreted.


Subject(s)
Droughts , Helianthus/physiology , Plant Transpiration , Populus/physiology , Water/metabolism , Plant Leaves/physiology , Populus/genetics , Soil/chemistry , Time Factors
11.
New Phytol ; 214(1): 271-283, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27918628

ABSTRACT

The gaseous phytohormone ethylene plays an important role in spike development in wheat (Triticum aestivum). However, the genotypic variation and the genomic regions governing spike ethylene (SET) production in wheat under long-term heat stress remain unexplored. We investigated genotypic variation in the production of SET and its relationship with spike dry weight (SDW) in 130 diverse wheat elite lines and landraces under heat-stressed field conditions. We employed an Illumina iSelect 90K single nucleotide polymorphism (SNP) genotyping array to identify the genetic loci for SET and SDW through a genome-wide association study (GWAS) in a subset of the Wheat Association Mapping Initiative (WAMI) panel. The SET and SDW exhibited appreciable genotypic variation among wheat genotypes at the anthesis stage. There was a strong negative correlation between SET and SDW. The GWAS uncovered five and 32 significant SNPs for SET, and 22 and 142 significant SNPs for SDW, in glasshouse and field conditions, respectively. Some of these SNPs closely localized to the SNPs for plant height, suggesting close associations between plant height and spike-related traits. The phenotypic and genetic elucidation of SET and its relationship with SDW supports future efforts toward gene discovery and breeding wheat cultivars with reduced ethylene effects on yield under heat stress.


Subject(s)
Ethylenes/metabolism , Genome-Wide Association Study , Heat-Shock Response/genetics , Triticum/genetics , Triticum/physiology , Biomass , Genotype , Phenotype , Triticum/anatomy & histology
12.
J Exp Bot ; 67(19): 5593-5603, 2016 10.
Article in English | MEDLINE | ID: mdl-27677299

ABSTRACT

The need to accelerate the selection of crop genotypes that are both resistant to and productive under abiotic stress is enhanced by global warming and the increase in demand for food by a growing world population. In this paper, we propose a new method for evaluation of wheat genotypes in terms of their resilience to stress and their production capacity. The method quantifies the components of a new index related to yield under abiotic stress based on previously developed stress indices, namely the stress susceptibility index, the stress tolerance index, the mean production index, the geometric mean production index, and the tolerance index, which were created originally to evaluate drought adaptation. The method, based on a scoring scale, offers simple and easy visualization and identification of resilient, productive and/or contrasting genotypes according to grain yield. This new selection method could help breeders and researchers by defining clear and strong criteria to identify genotypes with high resilience and high productivity and provide a clear visualization of contrasts in terms of grain yield production under stress. It is also expected that this methodology will reduce the time required for first selection and the number of first-selected genotypes for further evaluation by breeders and provide a basis for appropriate comparisons of genotypes that would help reveal the biology behind high stress productivity of crops.


Subject(s)
Climate Change , Crop Production/methods , Crops, Agricultural/genetics , Crop Production/trends , Crops, Agricultural/growth & development , Crops, Agricultural/physiology , Forecasting , Genetic Association Studies , Genotype , Stress, Physiological/genetics
13.
Plant Sci ; 251: 101-109, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27593468

ABSTRACT

There is increasing interest in rapidly identifying genotypes with improved water use efficiency, exemplified by the development of whole plant phenotyping platforms that automatically measure plant growth and water use. Transpirational responses to atmospheric vapour pressure deficit (VPD) and whole plant water use efficiency (WUE, defined as the accumulation of above ground biomass per unit of water used) were measured in 100 maize (Zea mays L.) genotypes. Using a glasshouse based phenotyping platform with naturally varying VPD (1.5-3.8kPa), a 2-fold variation in WUE was identified in well-watered plants. Regression analysis of transpiration versus VPD under these conditions, and subsequent whole plant gas exchange at imposed VPDs (0.8-3.4kPa) showed identical responses in specific genotypes. Genotype response of transpiration versus VPD fell into two categories: 1) a linear increase in transpiration rate with VPD with low (high WUE) or high (low WUE) transpiration rate at all VPDs, 2) a non-linear response with a pronounced change point at low VPD (high WUE) or high VPD (low WUE). In the latter group, high WUE genotypes required a significantly lower VPD before transpiration was restricted, and had a significantly lower rate of transpiration in response to VPD after this point, when compared to low WUE genotypes. Change point values were significantly positively correlated with stomatal sensitivity to VPD. A change point in stomatal response to VPD may explain why some genotypes show contradictory WUE rankings according to whether they are measured under glasshouse or field conditions. Furthermore, this novel use of a high throughput phenotyping platform successfully reproduced the gas exchange responses of individuals measured in whole plant chambers, accelerating the identification of plants with high WUE.


Subject(s)
Plant Transpiration/genetics , Water/metabolism , Zea mays/genetics , Biomass , Genotype , Phenotype , Plant Leaves , Regression Analysis , Vapor Pressure , Zea mays/metabolism
14.
J Exp Bot ; 67(17): 4935-49, 2016 09.
Article in English | MEDLINE | ID: mdl-27489235

ABSTRACT

Over the past five decades, Chinese grain production has increased 4-fold, from 110 Mt in 1961 to 557 Mt in 2014, with less than 9% of the world's arable land feeding 22% of the world's population, indicating a substantial contribution to global food security. However, compared with developed economies, such as the USA and the European Union, more than half of the increased crop production in China can be attributed to a rapid increase in the consumption of chemicals, particularly fertilizers. Excessive fertilization has caused low nutrient use efficiency and high environmental costs in grain production. We analysed the key requirements underpinning increased sustainability of crop production in China, as follows: (i) enhance nutrient use efficiency and reduce nutrient losses by fertilizing roots not soil to maximize root/rhizosphere efficiency with innovative root zone nutrient management; (ii) improve crop productivity and resource use efficiency by matching the best agronomic management practices with crop improvement; and (iii) promote technology transfer of the root zone nutrient management to achieve the target of high yields and high efficiency with low environmental risks on a broad scale. Coordinating grain production and environmental protection by increasing the sustainability of nutrient use will be a key step in achieving sustainable crop production in Chinese agriculture.


Subject(s)
Conservation of Natural Resources , Crop Production , Nutritional Status , China , Conservation of Natural Resources/methods , Cost-Benefit Analysis , Crop Production/methods , Environment , Food Supply , Humans
15.
Front Plant Sci ; 7: 461, 2016.
Article in English | MEDLINE | ID: mdl-27148292

ABSTRACT

Although, plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA) and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT) group maintained or increased shoot dry weight (SDW) while the drought-susceptible (DS) group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous ABA and ethylene concentrations under mild drought compared to control. The DT and DS groups exhibited different SDW response trends, whereby the DS group decreased while the DT group increased SDW, to increased concentrations of ABA and ethylene under mild drought, although both groups decreased ABA/ethylene ratio under mild drought albeit at different levels. We concluded that SDW of the DT and DS groups might be distinctly regulated by specific ABA:ethylene ratio. Further, a foliar-spray of low concentrations (0.1 µM) of ABA increased shoot relative growth rate (RGR) in the DS group while ACC (1-aminocyclopropane-1-carboxylic acid, ethylene precursor) spray increased RGR in both groups compared to control. Furthermore, the DT group accumulated a significantly higher galactose while a significantly lower maltose in the shoot compared to the DS group. Taken all together, these results suggest an impact of ABA, ethylene, and ABA:ethylene ratio on SDW of wheat seedlings that may partly underlie a genotypic variability of different shoot growth sensitivities to drought among crop species under field conditions. We propose that phenotyping based on hormone accumulation, response and hormonal ratio would be a viable, rapid, and an early-stage selection tool aiding genotype selection for stress tolerance.

16.
New Phytol ; 209(2): 823-31, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26313736

ABSTRACT

Root growth is influenced by soil nutrients and neighbouring plants, but how these two drivers affect root interactions and regulate plant growth dynamics is poorly understood. Here, interactions between the roots of maize (Zea mays) and faba bean (Vicia faba) are characterized. Maize was grown alone (maize) or with maize (maize/maize) or faba bean (maize/faba bean) as competitors under five levels of phosphorus (P) supply, and with homogeneous or heterogeneous P distribution. Maize had longer root length and greater shoot biomass and P content when grown with faba bean than with maize. At each P supply rate, faba bean had a smaller root system than maize but greater exudation of citrate and acid phosphatase, suggesting a greater capacity to mobilize P in the rhizosphere. Heterogeneous P availability enhanced the root-length density of maize but not faba bean. Maize root proliferation in the P-rich patches was associated with increased shoot P uptake. Increased P availability by localized P application or by the presence of faba bean exudation stimulated root morphological plasticity and increased shoot growth in maize in the maize/faba bean mixture, suggesting that root interactions of neighbouring plants can be modified by increased P availability.


Subject(s)
Phosphorus/pharmacokinetics , Plant Roots/growth & development , Soil/chemistry , Vicia faba/physiology , Zea mays/metabolism , Agriculture/methods , Biological Availability , Phosphorus/metabolism , Plant Exudates/metabolism , Plant Exudates/pharmacology , Zea mays/drug effects , Zea mays/growth & development
17.
J Exp Bot ; 66(8): 2253-69, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25873664

ABSTRACT

More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources.


Subject(s)
Agricultural Irrigation , Agriculture , Conservation of Natural Resources , Food Supply , Water Supply , China
18.
J Exp Bot ; 66(8): 2359-69, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25694548

ABSTRACT

Heavy metals have multiple effects on plant growth and physiology, including perturbation of plant water status. These effects were assessed by exposing the unique Cd-tolerant and Cd-accumulating pea (Pisum sativum L.) mutant SGECd(t) and its wild-type (WT) line SGE to either cadmium (1, 4 µM CdCl2) or mercury (0.5, 1, 2 µM HgCl2) in hydroponic culture for 12 days. When exposed to Cd, SGECd(t) accumulated more Cd in roots, xylem sap, and shoot, and had considerably more biomass than WT plants. WT plants lost circa 0.2 MPa turgor when grown in 4 µM CdCl2, despite massive decreases in whole-plant transpiration rate and stomatal conductance. In contrast, root Hg accumulation was similar in both genotypes, but WT plants accumulated more Hg in leaves and had a higher stomatal conductance, and root and shoot biomass compared with SGECd(t). Shoot excision resulted in greater root-pressure induced xylem exudation of SGECd(t) in the absence of Cd or Hg and following Cd exposure, whereas the opposite response or no genotypic differences occurred following Hg exposure. Exposing plants that had not been treated with metal to 50 µM CdCl2 for 1h increased root xylem exudation of WT, whereas 50 µM HgCl2 inhibited and eliminated genotypic differences in root xylem exudation, suggesting differences between WT and SGECd(t) plants in aquaporin function. Thus, root water transport might be involved in mechanisms of increased tolerance and accumulation of Cd in the SGECd(t) mutant. However, the lack of cross-tolerance to Cd and Hg stress in the mutant indicates metal-specific mechanisms related to plant adaptation.


Subject(s)
Adaptation, Physiological/drug effects , Cadmium/toxicity , Mercury/toxicity , Mutation/genetics , Pisum sativum/physiology , Water/metabolism , Biomass , Genotype , Pisum sativum/drug effects , Pisum sativum/genetics , Pisum sativum/growth & development , Plant Roots/drug effects , Plant Roots/physiology , Plant Shoots/drug effects , Plant Shoots/physiology , Plant Stomata/drug effects , Plant Transpiration/drug effects , Time Factors , Xylem/drug effects , Xylem/metabolism
19.
Nat Plants ; 1: 15118, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-27250549
20.
Plant Physiol Biochem ; 74: 84-91, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24270514

ABSTRACT

Although endogenous phytohormones such as abscisic acid (ABA) regulate root growth, and many rhizobacteria can modulate root phytohormone status, hitherto there have been no reports of rhizobacteria mediating root ABA concentrations and growth by metabolising ABA. Using a selective ABA-supplemented medium, two bacterial strains were isolated from the rhizosphere of rice (Oryza sativa) seedlings grown in sod-podzolic soil and assigned to Rhodococcus sp. P1Y and Novosphingobium sp. P6W using partial 16S rRNA gene sequencing and phenotypic patterns by the GEN III MicroPlate test. Although strain P6W had more rapid growth in ABA-supplemented media than strain P1Y, both could utilize ABA as a sole carbon source in batch culture. When rice seeds were germinated on filter paper in association with bacteria, root ABA concentration was not affected, but shoot ABA concentration of inoculated plants decreased by 14% (strain P6W) and 22% (strain P1Y). When tomato (Solanum lycopersicum) genotypes differing in ABA biosynthesis (ABA deficient mutants flacca - flc, and notabilis - not and the wild-type cv. Ailsa Craig, WT) were grown in gnotobiotic cultures on nutrient solution agar, rhizobacterial inoculation decreased root and/or leaf ABA concentrations, depending on plant and bacteria genotypes. Strain P6W inhibited primary root elongation of all genotypes, but increased leaf biomass of WT plants. In WT plants treated with silver ions that inhibit ethylene perception, both ABA-metabolising strains significantly decreased root ABA concentration, and strain P6W decreased leaf ABA concentration. Since these changes in ABA status also occurred in plants that were not treated with silver, it suggests that ethylene was probably not involved in regulating bacteria-mediated changes in ABA concentration. Correlations between plant growth and ABA concentrations in planta suggest that ABA-metabolising rhizobacteria may stimulate growth via an ABA-dependent mechanism.


Subject(s)
Abscisic Acid/metabolism , Oryza/microbiology , Rhizobium/metabolism , Oryza/growth & development , Oryza/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...