Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 196(7): 628, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888677

ABSTRACT

Pit lakes are currently being investigated as a way to store and reclaim waste materials in the Alberta Oil Sands (AOS) region, Canada. Lake Miwasin (LM) is a pilot-scale pit lake consisting of treated fine tailings overlayed with oil sands process-affected water (OSPW) blended with fresh surface water. In October 2021, the surface water contained a mean concentration of 1.33 ± 0.04 µg/L dissolved selenium (Se), slightly above the Canadian Council of Ministers of Environment water quality guideline for long-term protection of aquatic life (1 µg Se/L). This study assessed the bioaccumulation of Se by the cladoceran Daphnia pulex under laboratory conditions through both aqueous and dietary exposure routes for comparison to field-collected specimens. In 12-day semi-static tests, lab-cultured D.pulex were exposed to water, and algae grown in media spiked with selenate. Results showed that Se bioaccumulation by lab-cultured D. pulex increased in all exposure treatments from days 5 to 12, with maximum Se concentrations of 3.08-3.47 µg/g dry weight (dw) observed within the exposure range tested. Interestingly, lower Se bioaccumulation concentrations (1.26-1.58 µg/g dw) were observed in the highest dissolved Se and dietary Se treatments, suggesting potential internal regulatory mechanisms. In addition, native D. pulex (LM) collected from Lake Miwasin and cultured in-house were exposed in 8-day semi-static tests to Lake Miwasin surface water and algae cultured in Lake Miwasin surface water. Selenium bioaccumulation in native D. pulex (LM) ranged from 2.00 to 2.04 µg/g dw at day 8 and was not significantly different (p > 0.05) compared to Se concentrations in D. pulex collected from Lake Miwasin (2.15 ± 0.28 µg/g) in summer 2022.


Subject(s)
Bioaccumulation , Daphnia , Dietary Exposure , Environmental Monitoring , Lakes , Selenium , Water Pollutants, Chemical , Animals , Daphnia/metabolism , Selenium/metabolism , Selenium/analysis , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Lakes/chemistry , Alberta , Daphnia pulex
2.
Arch Environ Contam Toxicol ; 87(1): 1-15, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38825619

ABSTRACT

Significant amounts of tailings and oil sands process-affected water (OSPW) are generated by bitumen extraction in the Alberta Oil Sands region. These by-products are potentially toxic to aquatic organisms and require remediation. The study site was Lake Miwasin, a pilot-scale pit lake integrated into broader reclamation efforts. It consists of treated tailings overlaid with blended OSPW and freshwater, exhibiting meromictic conditions and harboring aquatic communities. This study assessed the potential toxicity of Lake Miwasin surface water (LMW) and pore water (LMP) using saline-acclimated Cladocera, including lab strains of Daphnia magna and Daphnia pulex and native Daphnia species collected in brackish Humboldt Lake (HL) and Lake Miwasin (LM). The pore water evaluation was used to represent a worst-case water quality scenario during pond stratification. Additionally, the inclusion of native organisms incorporated site-specific adaptations and regional sensitivity into the toxicity evaluation. Our results showed that LMW did not display acute or chronic toxicity to lab species and native Daphnia sp. (HL). Conversely, LMP was acutely toxic to both lab species and native D. pulex (LM). In chronic tests (12 days exposure), LMP negatively affected reproduction in D. pulex (lab), with reductions in the number of offspring. Limited ability to acclimated organisms to the high salinity levels of LMP resulted in a shortened exposure duration for the chronic toxicity test. In addition to salinity being identified as a stressor in LMP, toxicity identification evaluation (TIE) phase I findings demonstrated that the observed toxicity for D. magna (lab) and D. pulex (LM, native) might be attributed to ammonia and metals in LMP. Further investigations are required to confirm the contributions of these stressors to LMP toxicity.


Subject(s)
Daphnia , Lakes , Oil and Gas Fields , Water Pollutants, Chemical , Animals , Daphnia/drug effects , Daphnia/physiology , Alberta , Water Pollutants, Chemical/toxicity , Lakes/chemistry , Environmental Monitoring , Hydrocarbons/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...