Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Insect Sci ; 3: 1154510, 2023.
Article in English | MEDLINE | ID: mdl-38469494

ABSTRACT

Spotted lanternfly (SLF) (Lycorma delicatula (White)), an invasive planthopper discovered in Pennsylvania, USA in 2014, continues to spread and is now present in 14 states with substantial infestations present in seven states. Population projections using adult SLF trapping or visual counts are not reliable due to the transient, migratory behavior of the adults which make population forecasts difficult. Another approach to population monitoring is utilization of the stationary egg mass stage, but counting small cryptic egg masses throughout the canopy of large trees in dense woodlots is arduous and prone to error. After several field seasons testing various trapping configurations and materials, we have identified an efficient, simple, low-cost trap termed a 'lamp shade trap' that is attached to the lower trunk area of an SLF host tree. SLF females readily enter the trap and lay eggs on the thin, flexible trap surface. A vertical trap orientation was superior, and the most productive woodlots yielded an average of 47 and 54 egg masses per trap, and several traps had over 100 egg masses. There were 1,943 egg masses tallied from 105 traps placed at six locations in two states. Egg mass counts in the area above and below the traps and on nearby control trees yielded very few egg masses in comparison. Selection of trees 15 to 20 cm in diameter for trap placement is most efficient, yielding good egg mass abundance while minimizing the amount of trap material used. The lamp shade trap has potential as an effective tool to identify SLF in new areas, gauge SLF population levels in woodlots and can also be used to collect and monitor egg masses for research purposes.

2.
Insect Sci ; 26(3): 569-586, 2019 Jun.
Article in English | MEDLINE | ID: mdl-29105309

ABSTRACT

Investigating how crop domestication and early farming mediated crop attributes, distributions, and interactions with antagonists may shed light on today's agricultural pest problems. Crop domestication generally involved artificial selection for traits desirable to early farmers, for example, increased productivity or yield, and enhanced qualities, though invariably it altered the interactions between crops and insects, and expanded the geographical ranges of crops. Thus, some studies suggest that with crop domestication and spread, insect populations on wild crop ancestors gave rise to pestiferous insect populations on crops. Here, we addressed whether the emergence of corn leafhopper (Dalbulus maidis) as an agricultural pest may be associated with domestication and early spread of maize (Zea mays mays). We used AFLP markers and mitochondrial COI sequences to assess population genetic structuring and haplotype relationships among corn leafhopper samples from maize and its wild relative Zea diploperennis from multiple locations in Mexico and Argentina. We uncovered seven corn leafhopper haplotypes contained within two haplogroups, one haplogroup containing haplotypes associated with maize and the other containing haplotypes associated with Z. diploperennis in a mountainous habitat. Within the first haplogroup, one haplotype was predominant across Mexican locations, and another across Argentinean locations; both were considered pestiferous. We suggested that the divergence times of the maize-associated haplogroup and of the "pestiferous" haplotypes are correlated with the chronology of maize spread following its domestication. Overall, our results support a hypothesis positing that maize domestication favored corn leafhopper genotypes preadapted for exploiting maize so that they became pestiferous, and that with the geographical expansion of maize farming, corn leafhopper colonized Z. diploperennis, a host exclusive to secluded habitats that serves as a refuge for archaic corn leafhopper genotypic diversity. Broadly, our results help explain the extents to which crop domestication and early spread may have mediated the emergence of today's agricultural pests.


Subject(s)
Domestication , Hemiptera/genetics , Zea mays , Amplified Fragment Length Polymorphism Analysis , Animals , DNA, Mitochondrial/genetics , Haplotypes , Mexico , Phylogeography
3.
Oecologia ; 173(4): 1425-37, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23868032

ABSTRACT

Plant defenses against herbivores are predicted to change as plant lineages diversify, and with domestication and subsequent selection and breeding in the case of crop plants. We addressed whether defense against a specialist herbivore declined coincidently with life history evolution, domestication, and breeding within the grass genus Zea (Poaceae). For this, we assessed performance of corn leafhopper (Dalbulus maidis) following colonization of one of four Zea species containing three successive transitions: the evolutionary transition from perennial to annual life cycle, the agricultural transition from wild annual grass to primitive crop cultivar, and the agronomic transition from primitive to modern crop cultivar. Performance of corn leafhopper was measured through seven variables relevant to development speed, survivorship, fecundity, and body size. The plants included in our study were perennial teosinte (Zea diploperennis), Balsas teosinte (Zea mays parviglumis), a landrace maize (Zea mays mays), and a hybrid maize. Perennial teosinte is a perennial, iteroparous species, and is basal in Zea; Balsas teosinte is an annual species, and the progenitor of maize; the landrace maize is a primitive, genetically diverse cultivar, and is ancestral to the hybrid maize; and, the hybrid maize is a highly inbred, modern cultivar. Performance of corn leafhopper was poorest on perennial teosinte, intermediate on Balsas teosinte and landrace maize, and best on hybrid maize, consistent with our expectation of declining defense from perennial teosinte to hybrid maize. Overall, our results indicated that corn leafhopper performance increased most with the agronomic transition, followed by the life history transition, and least with the domestication transition.


Subject(s)
Agriculture , Biological Evolution , Hemiptera/physiology , Herbivory , Zea mays/genetics , Animals , Breeding , Female , Fertility , Genetic Variation , Male , Selection, Genetic , Zea mays/classification , Zea mays/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...