Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(6): e0295373, 2024.
Article in English | MEDLINE | ID: mdl-38870202

ABSTRACT

Transcranial direct current stimulation (tDCS) has been shown to modify excitability of the primary motor cortex (M1) and influence online motor learning. However, research on the effects of tDCS on motor learning has focused predominantly on simplified motor tasks. The purpose of the present study was to investigate whether anodal stimulation of M1 over a single session of practice influences online learning of a relatively complex rhythmic timing video game. Fifty-eight healthy young adults were randomized to either a-tDCS or SHAM conditions and performed 2 familiarization blocks, a 20-minute 5 block practice period while receiving their assigned stimulation, and a post-test block with their non-dominant hand. To assess performance, a performance index was calculated that incorporated timing accuracy elements and incorrect key inputs. The results showed that M1 a-tDCS enhanced the learning of the video game based skill more than SHAM stimulation during practice, as well as overall learning at the post-test. These results provide evidence that M1 a-tDCS can enhance acquisition of skills where quality or success of performance depends on optimized timing between component motions of the skill, which could have implications for the application of tDCS in many real-world contexts.


Subject(s)
Learning , Motor Cortex , Transcranial Direct Current Stimulation , Video Games , Humans , Transcranial Direct Current Stimulation/methods , Male , Female , Learning/physiology , Young Adult , Motor Cortex/physiology , Adult , Motor Skills/physiology
2.
Horm Behav ; 162: 105541, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583235

ABSTRACT

INTRODUCTION: Interoceptive stimuli elicited by drug administration acquire conditioned modulatory properties of the induction of conditioned appetitive behaviours by exteroceptive cues. This effect may be modeled using a drug discrimination task in which the drug stimulus is trained as a positive-feature (FP) occasion setter (OS) that disambiguates the relation between an exteroceptive light conditioned stimulus (CS) and a sucrose unconditioned stimulus (US). We previously reported that females are less sensitive to generalization of a FP morphine OS than males, so we investigated the role of endogenous ovarian hormones in this difference. METHODS: Male and female rats received intermixed injections of 3.2 mg/kg morphine or saline before each daily training session. Training consisted of 8 presentations of the CS, each followed by access to sucrose on morphine, but not saline sessions. Following acquisiton, rats were tested for generalization of the morphine stimulus to 0, 1.0, 3.2, and 5.4 mg/kg morphine. Female rats were monitored for estrous cyclicity using vaginal cytology throughout the study. RESULTS: Both sexes acquired stable drug discrimination. A gradient of generalization was measured across morphine doses and this behaviour did not differ by sex, nor did it differ across the estrous cycle in females. CONCLUSIONS: Morphine generalization is independent of fluctuations in levels of sex and endogenous gonadal hormones in females under these experimental conditions.


Subject(s)
Estrous Cycle , Morphine , Animals , Female , Male , Estrous Cycle/physiology , Estrous Cycle/drug effects , Morphine/pharmacology , Rats , Generalization, Psychological/drug effects , Generalization, Psychological/physiology , Conditioning, Classical/drug effects , Conditioning, Classical/physiology , Rats, Sprague-Dawley , Interoception/physiology , Interoception/drug effects , Discrimination Learning/drug effects , Discrimination Learning/physiology
3.
Article in English | MEDLINE | ID: mdl-38580732

ABSTRACT

RATIONALE: Internally perceived stimuli evoked by morphine administration can form Pavlovian associations such that they can function as occasion setters (OSs) for externally perceived reward cues in rats, coming to modulate reward-seeking behaviour. Though much research has investigated mechanisms underlying opioid-related reinforcement and analgesia, neurotransmitter systems involved in the functioning of opioids as Pavlovian interoceptive discriminative stimuli remain to be disentangled despite documented differences in the development of tolerance to analgesic versus discriminative stimulus effects. OBJECTIVES: Dopamine has been implicated in many opioid-related behaviours, so we aimed to investigate the role of this neurotransmitter in expression of morphine occasion setting. METHODS: Male and female rats were assigned to positive- (FP) or negative-feature (FN) groups and received an injection of morphine or saline before each training session. A 15-s white noise conditioned stimulus (CS) was presented 8 times during every training session; offset of this stimulus was followed by 4-s access to liquid sucrose on morphine, but not saline, sessions for FP rats. FN rats learned the reverse contingency. Following stable discrimination, rats began generalization testing for expression of morphine-guided sucrose seeking after systemic pretreatment with different doses of the non-selective dopamine receptor antagonist, flupenthixol, and the non-selective dopamine receptor agonist, apomorphine, combined with training doses of morphine or saline in a Latin-square design. RESULTS: The morphine discrimination was acquired under both FP and FN contingencies by males and females. Neither flupenthixol nor apomorphine at any dose substituted for morphine, but both apomorphine and flupenthixol disrupted expression of the morphine OS. This inhibition was specific to sucrose seeking during CS presentations rather than during the period before CS onset and, in the case of apomorphine more so than flupenthixol, to trials on which access to sucrose was anticipated. CONCLUSIONS: Our findings lend support to a mechanism of occasion setting involving gating of CS-induced dopamine release rather than by direct dopaminergic modulation by the morphine stimulus.

4.
Comput Struct Biotechnol J ; 21: 5249-5258, 2023.
Article in English | MEDLINE | ID: mdl-37954151

ABSTRACT

This study investigates the functional significance of assorted variants of uncertain significance (VUS) in euchromatic histone lysine methyltransferase 1 (EHMT1), which is critical for early development and normal physiology. EHMT1 mutations cause Kleefstra syndrome and are linked to various human cancers. However, accurate functional interpretations of these variants are yet to be made, limiting diagnoses and future research. To overcome this, we integrate conventional tools for variant calling with computational biophysics and biochemistry to conduct multi-layered mechanistic analyses of the SET catalytic domain of EHMT1, which is critical for this protein function. We use molecular mechanics and molecular dynamics (MD)-based metrics to analyze the SET domain structure and functional motions resulting from 97 Kleefstra syndrome missense variants within the domain. Our approach allows us to classify the variants in a mechanistic manner into SV (Structural Variant), DV (Dynamic Variant), SDV (Structural and Dynamic Variant), and VUS (Variant of Uncertain Significance). Our findings reveal that the damaging variants are mostly mapped around the active site, substrate binding site, and pre-SET regions. Overall, we report an improvement for this method over conventional tools for variant interpretation and simultaneously provide a molecular mechanism for variant dysfunction.

5.
Methods Enzymol ; 690: 285-310, 2023.
Article in English | MEDLINE | ID: mdl-37858532

ABSTRACT

Fragment-based drug discovery (FBDD) identifies low molecular weight compounds that can be developed into ligands with high affinity and selectivity for therapeutic targets. Screening fragment libraries (<10,000 molecules) with biophysical techniques against macromolecules provides information about novel chemical spaces that bind the macromolecule and scaffolds that can be modified to increase potency. A fragment-screening pipeline requires a standardized protocol for target selection, library assembly and maintenance, library screening, and hit validation to ensure hit integrity. Herein, the fundamental aspects of a fragment screening pipeline-focusing on protein-detected NMR data collection and analysis-are discussed in detail for researchers to use as a resource in their FBDD projects. Selected screening targets must undergo rigorous stability and buffer testing by NMR spectroscopy to ensure the protein structure is stable for the entire screen. Biophysical instrumentation that rapidly measures protein thermostability is helpful in buffer screening. Molecules in fragment libraries are analyzed computationally and physically, stored at appropriate temperatures, and multiplexed in well plates for library conservation. The screening protocol is streamlined using liquid handling robotics for sample preparation and customized Python scripts for protein-detected NMR data analysis. Molecules identified from the screen are titrated to determine their binding site(s) and Kd values and confirmed with an orthogonal biophysical assay. This detailed FBDD screening pipeline developed by the Program in Chemical Biology at the Medical College of Wisconsin has successfully screened many unrelated target proteins to identified novel molecules that selectively bind to these target proteins.


Subject(s)
Drug Discovery , Proteins , Humans , Nuclear Magnetic Resonance, Biomolecular/methods , Drug Discovery/methods , Magnetic Resonance Spectroscopy , Binding Sites , Ligands
6.
bioRxiv ; 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37786696

ABSTRACT

This study investigates the functional significance of assorted variants of uncertain significance (VUS) in euchromatic histone lysine methyltransferase 1 (EHMT1), which is critical for early development and normal physiology. EHMT1 mutations cause Kleefstra syndrome and are linked to various human cancers. However, accurate functional interpretation of these variants are yet to be made, limiting diagnoses and future research. To overcome this, we integrate conventional tools for variant calling with computational biophysics and biochemistry to conduct multi-layered mechanistic analyses of the SET catalytic domain of EHMT1, which is critical for this protein function. We use molecular mechanics and molecular dynamics (MD)-based metrics to analyze the SET domain structure and functional motions resulting from 97 Kleefstra syndrome missense variants within this domain. Our approach allows us to classify the variants in a mechanistic manner into SV (Structural Variant), DV (Dynamic Variant), SDV (Structural and Dynamic Variant), and VUS (Variant of Uncertain Significance). Our findings reveal that the damaging variants are mostly mapped around the active site, substrate binding site, and pre-SET regions. Overall, we report an improvement for this method over conventional tools for variant interpretation and simultaneously provide a molecular mechanism of variant dysfunction.

7.
Comput Struct Biotechnol J ; 21: 4790-4803, 2023.
Article in English | MEDLINE | ID: mdl-37841325

ABSTRACT

Current capabilities in genomic sequencing outpace functional interpretations. Our previous work showed that 3D protein structure calculations enhance mechanistic understanding of genetic variation in sequenced tumors and patients with rare diseases. The KRAS GTPase is among the critical genetic factors driving cancer and germline conditions. Because KRAS-altered tumors frequently harbor one of three classic hotspot mutations, nearly all studies have focused on these mutations, leaving significant functional ambiguity across the broader KRAS genomic landscape observed in cancer and non-cancer diseases. Herein, we extend structural bioinformatics with molecular simulations to study an expanded landscape of 86 KRAS mutations. We identify multiple coordinated changes strongly associated with experimentally established KRAS biophysical and biochemical properties. The patterns we observe span hotspot and non-hotspot alterations, which can all dysregulate Switch regions, producing mutation-restricted conformations with different effector binding propensities. We experimentally measured mutation thermostability and identified shared and distinct patterns with simulations. Our results indicate mutation-specific conformations, which show potential for future research into how these alterations reverberate into different molecular and cellular functions. The data we present is not predictable using current genomic tools, demonstrating the added functional information derived from molecular simulations for interpreting human genetic variation.

8.
bioRxiv ; 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37207265

ABSTRACT

Current capabilities in genomic sequencing outpace functional interpretations. Our previous work showed that 3D protein structure calculations enhance mechanistic understanding of genetic variation in sequenced tumors and patients with rare diseases. The KRAS GTPase is among the critical genetic factors driving cancer and germline conditions. Because KRAS-altered tumors frequently harbor one of three classic hotspot mutations, nearly all studies have focused on these mutations, leaving significant functional ambiguity across the broader KRAS genomic landscape observed in cancer and non-cancer diseases. Herein, we extend structural bioinformatics with molecular simulations to study an expanded landscape of 86 KRAS mutations. We identify multiple coordinated changes strongly associated with experimentally established KRAS biophysical and biochemical properties. The patterns we observe span hotspot and non-hotspot alterations, which can all dysregulate Switch regions, producing mutation-restricted conformations with different effector binding propensities. We experimentally measured mutation thermostability and identified shared and distinct patterns with simulations. Our results indicate mutation-specific conformations which show potential for future research into how these alterations reverberate into different molecular and cellular functions. The data we present is not predictable using current genomic tools, demonstrating the added functional information derived from molecular simulations for interpreting human genetic variation.

9.
Proc Natl Acad Sci U S A ; 120(11): e2207974120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36897987

ABSTRACT

Small beta barrel proteins are attractive targets for computational design because of their considerable functional diversity despite their very small size (<70 amino acids). However, there are considerable challenges to designing such structures, and there has been little success thus far. Because of the small size, the hydrophobic core stabilizing the fold is necessarily very small, and the conformational strain of barrel closure can oppose folding; also intermolecular aggregation through free beta strand edges can compete with proper monomer folding. Here, we explore the de novo design of small beta barrel topologies using both Rosetta energy-based methods and deep learning approaches to design four small beta barrel folds: Src homology 3 (SH3) and oligonucleotide/oligosaccharide-binding (OB) topologies found in nature and five and six up-and-down-stranded barrels rarely if ever seen in nature. Both approaches yielded successful designs with high thermal stability and experimentally determined structures with less than 2.4 Å rmsd from the designed models. Using deep learning for backbone generation and Rosetta for sequence design yielded higher design success rates and increased structural diversity than Rosetta alone. The ability to design a large and structurally diverse set of small beta barrel proteins greatly increases the protein shape space available for designing binders to protein targets of interest.


Subject(s)
Amino Acids , Proteins , Protein Structure, Secondary , Models, Molecular , Proteins/chemistry , Protein Conformation, beta-Strand , Protein Folding
10.
SLAS Discov ; 28(4): 163-169, 2023 06.
Article in English | MEDLINE | ID: mdl-36841432

ABSTRACT

The mucosal chemokine CCL28 is a promising target for immunotherapy drug development due to its elevated expression level in epithelial cells and critical role in creating and maintaining an immunosuppressive tumor microenvironment. Using sulfotyrosine as a probe, NMR chemical shift mapping identified a potential receptor-binding hotspot on the human CCL28 surface. CCL28 was screened against 2,678 commercially available chemical fragments by 2D NMR, yielding thirteen verified hits. Computational docking predicted that two fragments could occupy adjoining subsites within the sulfotyrosine recognition cleft. Dual NMR titrations confirmed their ability to bind CCL28 simultaneously, thereby validating an initial fragment pair for linking and merging strategies to design high-potency CCL28 inhibitors.


Subject(s)
Chemokines, CC , Chemokines , Humans , Ligands , Chemokines/metabolism , Chemokines, CC/metabolism , Epithelial Cells/metabolism , Drug Discovery
11.
J Med Chem ; 65(20): 13714-13735, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36227159

ABSTRACT

PBRM1 is a subunit of the PBAF chromatin remodeling complex that uniquely contains six bromodomains. PBRM1 can operate as a tumor suppressor or tumor promoter. PBRM1 is a tumor promoter in prostate cancer, contributing to migratory and immunosuppressive phenotypes. Selective chemical probes targeting PBRM1 bromodomains are desired to elucidate the association between aberrant PBRM1 chromatin binding and cancer pathogenesis and the contributions of PBRM1 to immunotherapy. Previous PBRM1 inhibitors unselectively bind SMARCA2 and SMARCA4 bromodomains with nanomolar potency. We used our protein-detected NMR screening pipeline to screen 1968 fragments against the second PBRM1 bromodomain, identifying 17 hits with Kd values from 45 µM to >2 mM. Structure-activity relationship studies on the tightest-binding hit resulted in nanomolar inhibitors with selectivity for PBRM1 over SMARCA2 and SMARCA4. These chemical probes inhibit the association of full-length PBRM1 to acetylated histone peptides and selectively inhibit growth of a PBRM1-dependent prostate cancer cell line.


Subject(s)
Histones , Prostatic Neoplasms , Male , Humans , Histones/metabolism , Protein Domains , Chromatin , Prostatic Neoplasms/drug therapy , Carcinogens , DNA Helicases/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , DNA-Binding Proteins/metabolism
12.
Neurosci Biobehav Rev ; 135: 104584, 2022 04.
Article in English | MEDLINE | ID: mdl-35189163

ABSTRACT

Women are more sensitive to cocaine craving elicited by stimuli associated with relapse. Ovarian hormones modulate cocaine craving and may therefore function as risk factors or therapeutic agents for the development and treatment of cocaine use disorder, respectively. We review herein the neuropharmacological effects of the steroid hormones 17ß-estradiol, progesterone, and allopregnanolone, a progesterone metabolite, in relation to their effects on cocaine-induced locomotion, behavioural sensitization, conditioned place preference, and reinstatement of cocaine seeking. In general, the literature suggests that female rats are more sensitive to these cocaine-induced behaviours than males and that 17ß-estradiol facilitates the expression of these sex differences. Alternatively, in females, exogenous progesterone attenuates cocaine conditioned place preference, reinstatement, and possibly behavioural sensitization, either on its own or after conversion to allopregnanolone. These opposing effects of 17ß-estradiol and progesterone/allopregnanolone involve endocannabinoid, γ-aminobutyric acid, dopamine, and glutamate transmission in the medial prefrontal cortex and striatum. We conclude that 17ß-estradiol may be a risk factor for various components of cocaine use disorder in women, whereas progesterone and allopregnanolone may be potential treatment options.


Subject(s)
Cocaine-Related Disorders , Cocaine , Animals , Cocaine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Estradiol , Estrogens/pharmacology , Female , Humans , Male , Progesterone/pharmacology , Rats
13.
Sci Signal ; 14(696)2021 08 17.
Article in English | MEDLINE | ID: mdl-34404752

ABSTRACT

The pleiotropic chemokine CXCL12 is involved in diverse physiological and pathophysiological processes, including embryogenesis, hematopoiesis, leukocyte migration, and tumor metastasis. It is known to engage the classical receptor CXCR4 and the atypical receptor ACKR3. Differential receptor engagement can transduce distinct cellular signals and effects as well as alter the amount of free, extracellular chemokine. CXCR4 binds both monomeric and the more commonly found dimeric forms of CXCL12, whereas ACKR3 binds monomeric forms. Here, we found that CXCL12 also bound to the atypical receptor ACKR1 (previously known as Duffy antigen/receptor for chemokines or DARC). In vitro nuclear magnetic resonance spectroscopy and isothermal titration calorimetry revealed that dimeric CXCL12 bound to the extracellular N terminus of ACKR1 with low nanomolar affinity, whereas the binding affinity of monomeric CXCL12 was orders of magnitude lower. In transfected MDCK cells and primary human Duffy-positive erythrocytes, a dimeric, but not a monomeric, construct of CXCL12 efficiently bound to and internalized with ACKR1. This interaction between CXCL12 and ACKR1 provides another layer of regulation of the multiple biological functions of CXCL12. The findings also raise the possibility that ACKR1 can bind other dimeric chemokines, thus potentially further expanding the role of ACKR1 in chemokine retention and presentation.


Subject(s)
Chemokine CXCL12 , Receptors, CXCR4 , Cell Movement , Chemokine CXCL12/genetics , Duffy Blood-Group System , Humans , Receptors, CXCR4/genetics , Receptors, Cell Surface , Signal Transduction
14.
Animal ; 15(5): 100206, 2021 May.
Article in English | MEDLINE | ID: mdl-34098372

ABSTRACT

The nutritional composition of diets and the provision of exogenous enzymes play important roles in animal performance. Here, we evaluated the individual and combined impact of nutrients (metabolizable energy (ME), digestible lysine (dLys), available phosphorus and calcium (avP-Ca)) and exogenous multicarbohydrase and phytase complex (MCPC) enyzmes on the growth performance and feed efficiency of broiler chickens from 10 to 42 days (d) of age. Experimental diets were formulated in a Box-Behnken design to contain various levels of ME (11.89, 12.21, 12.54 or 13.06 MJ/kg), dLys (0.91%, 0.93%, 0.96% or 1.00%) and avP/Ca (0.12/0.47%, 0.21/0.58% or 0.33/0.68%). The effect of MCPC was expressed in terms of the extra nutrients released. The diets were formulated to have consistent substrate contents (i.e., arabinoxylan and phytate). Feed intake (FI), BW gain (BWG) and feed conversion ratio (FCR) were described via polynomial equations (R2 = 0.99, 0.98 and 0.81, respectively), with interconnections between variables (ME, dLys and avP-Ca). Available P-Ca was the most important factor affecting FI (quadratically), and BWG and FCR (linearly). Reducing the avP content from 0.33% to 0.12% in diets lacking MCPC resulted in 25% and 33% decreases in FI and BWG, respectively, and a 12% increase in FCR. The ME and dLys contents also linearly affected these performance parameters to a lesser degree; FI decreased by 400 g when the ME was reduced by 1.17 MJ/kg, and by 300 g following a 0.09% reduction of dLys, while the same reductions in ME and dLys decreased BWG by 120 g and 150 g, respectively. The inclusion of MCPC alleviated the reduction of FI, BWG and FCR by decreasing the avP-Ca. Thus, ME and dLys were the most important factors affecting BWG and FCR in broilers fed diets containing MCPC. When MCPC was added, ME negatively affected FI (r = -0.89, P < 0.001), whereas the dLys content was correlated with BWG (r = 0.74, P < 0.001). Both ME and dLys affected FCR (r = -0.83 and -0.85, respectively). Supplementing MCPC allowed the reduction of ME, dLys and avP-Ca in the diet without affecting performance. Indeed, MCPC's effect promoted with the release of the following nutrients: 0.56 MJ ME/kg, 0.06% dLys, and 0.15% and 0.13% avP and Ca, respectively. The results indicate nutrient effect and interaction on performance and feed additive potential for nutrient release.


Subject(s)
Chickens , Lysine , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Dietary Supplements , Phosphorus
15.
NPJ Precis Oncol ; 5(1): 16, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33654182

ABSTRACT

Recurrence of therapy-resistant tumors is a principal problem in solid tumor oncology, particularly in ovarian cancer. Despite common complete responses to first line, platinum-based therapies, most women with ovarian cancer recur, and eventually, nearly all with recurrent disease develop platinum resistance. Likewise, both intrinsic and acquired resistance contribute to the dismal prognosis of pancreatic cancer. Our previous work and that of others has established CLPTM1L (cleft lip and palate transmembrane protein 1-like)/CRR9 (cisplatin resistance related protein 9) as a cytoprotective oncofetal protein that is present on the tumor cell surface. We show that CLPTM1L is broadly overexpressed and accumulated on the plasma membrane of ovarian tumor cells, while weakly or not expressed in normal tissues. High expression of CLPTM1L is associated with poor outcome in ovarian serous adenocarcinoma. Robust re-sensitization of resistant ovarian cancer cells to platinum-based therapy was achieved using human monoclonal biologics inhibiting CLPTM1L in both orthotopic isografts and patient-derived cisplatin resistant xenograft models. Furthermore, we demonstrate that in addition to cell-autonomous cytoprotection by CLPTM1L, extracellular CLPTM1L confers resistance to chemotherapeutic killing in an ectodomain-dependent fashion, and that this intercellular resistance mechanism is inhibited by anti-CLPTM1L biologics. Specifically, exosomal CLPTM1L from cisplatin-resistant ovarian carcinoma cell lines conferred resistance to cisplatin in drug-sensitive parental cell lines. CLPTM1L is present in extracellular vesicle fractions of tumor culture supernatants and in patients' serum with increasing abundance upon chemotherapy treatment. These findings have encouraging implications for the use of anti-CLPTM1L targeted biologics in the treatment of therapy-resistant tumors.

16.
Chembiochem ; 19(5): 448-458, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29239081

ABSTRACT

An academic chemical screening approach was developed by using 2D protein-detected NMR, and a 352-chemical fragment library was screened against three different protein targets. The approach was optimized against two protein targets with known ligands: CXCL12 and BRD4. Principal component analysis reliably identified compounds that induced nonspecific NMR crosspeak broadening but did not unambiguously identify ligands with specific affinity (hits). For improved hit detection, a novel scoring metric-difference intensity analysis (DIA)-was devised that sums all positive and negative intensities from 2D difference spectra. Applying DIA quickly discriminated potential ligands from compounds inducing nonspecific NMR crosspeak broadening and other nonspecific effects. Subsequent NMR titrations validated chemotypes important for binding to CXCL12 and BRD4. A novel target, mitochondrial fission protein Fis1, was screened, and six hits were identified by using DIA. Screening these diverse protein targets identified quinones and catechols that induced nonspecific NMR crosspeak broadening, hampering NMR analyses, but are currently not computationally identified as pan-assay interference compounds. The results established a streamlined screening workflow that can easily be scaled and adapted as part of a larger screening pipeline to identify fragment hits and assess relative binding affinities in the range of 0.3-1.6 mm. DIA could prove useful in library screening and other applications in which NMR chemical shift perturbations are measured.


Subject(s)
Chemokine CXCL12/metabolism , Drug Discovery/methods , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Nuclear Magnetic Resonance, Biomolecular/methods , Nuclear Proteins/metabolism , Small Molecule Libraries/pharmacology , Transcription Factors/metabolism , Cell Cycle Proteins , Chemokine CXCL12/chemistry , Humans , Ligands , Membrane Proteins/chemistry , Mitochondrial Proteins/chemistry , Models, Molecular , Nuclear Proteins/chemistry , Principal Component Analysis , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Small Molecule Libraries/chemistry , Transcription Factors/chemistry
17.
ACS Chem Biol ; 12(11): 2842-2848, 2017 11 17.
Article in English | MEDLINE | ID: mdl-28949512

ABSTRACT

Increasing drought and diminishing freshwater supplies have stimulated interest in developing small molecules that can be used to control transpiration. Receptors for the plant hormone abscisic acid (ABA) have emerged as key targets for this application, because ABA controls the apertures of stomata, which in turn regulate transpiration. Here, we describe the rational design of cyanabactin, an ABA receptor agonist that preferentially activates Pyrabactin Resistance 1 (PYR1) with low nanomolar potency. A 1.63 Å X-ray crystallographic structure of cyanabactin in complex with PYR1 illustrates that cyanabactin's arylnitrile mimics ABA's cyclohexenone oxygen and engages the tryptophan lock, a key component required to stabilize activated receptors. Further, its sulfonamide and 4-methylbenzyl substructures mimic ABA's carboxylate and C6 methyl groups, respectively. Isothermal titration calorimetry measurements show that cyanabactin's compact structure provides ready access to high ligand efficiency on a relatively simple scaffold. Cyanabactin treatments reduce Arabidopsis whole-plant stomatal conductance and activate multiple ABA responses, demonstrating that its in vitro potency translates to ABA-like activity in vivo. Genetic analyses show that the effects of cyanabactin, and the previously identified agonist quinabactin, can be abolished by the genetic removal of PYR1 and PYL1, which form subclade A within the dimeric subfamily III receptors. Thus, cyanabactin is a potent and selective agonist with a wide spectrum of ABA-like activities that defines subfamily IIIA receptors as key target sites for manipulating transpiration.


Subject(s)
Abscisic Acid/metabolism , Agrochemicals/metabolism , Arabidopsis Proteins/agonists , Arabidopsis/drug effects , Membrane Transport Proteins/agonists , Plant Stomata/drug effects , Sulfonamides/metabolism , Agrochemicals/chemistry , Arabidopsis/physiology , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Crystallography, X-Ray , Droughts , Ligands , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Models, Molecular , Naphthalenes/chemistry , Naphthalenes/metabolism , Plant Stomata/physiology , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Sulfonamides/chemistry
18.
Structure ; 25(3): 446-457, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28162952

ABSTRACT

The interaction of high-density lipoprotein (HDL) with its receptor, scavenger receptor BI (SR-BI), is critical for lowering plasma cholesterol levels and reducing the risk for cardiovascular disease. The HDL/SR-BI complex facilitates delivery of cholesterol into cells and is likely mediated by receptor dimerization. This work describes the use of nuclear magnetic resonance (NMR) spectroscopy to generate the first high-resolution structure of the C-terminal transmembrane domain of SR-BI. This region of SR-BI harbors a leucine zipper dimerization motif, which when mutated impairs the ability of the receptor to bind HDL and mediate cholesterol delivery. These losses in function correlate with the inability of SR-BI to form dimers. We also identify juxtamembrane regions of the extracellular domain of SR-BI that may interact with the lipid surface to facilitate cholesterol transport functions of the receptor.


Subject(s)
Lipoproteins, HDL/metabolism , Mutagenesis, Site-Directed , Scavenger Receptors, Class B/chemistry , Scavenger Receptors, Class B/genetics , Animals , COS Cells , Chlorocebus aethiops , Humans , Leucine Zippers , Magnetic Resonance Spectroscopy , Mice , Models, Molecular , Protein Structure, Secondary , Scavenger Receptors, Class B/metabolism
19.
Biochemistry ; 55(27): 3784-93, 2016 07 12.
Article in English | MEDLINE | ID: mdl-27305837

ABSTRACT

Chemokines make up a superfamily of ∼50 small secreted proteins (8-12 kDa) involved in a host of physiological processes and disease states, with several previously shown to have direct antimicrobial activity comparable to that of defensins in efficacy. XCL1 is a unique metamorphic protein that interconverts between the canonical chemokine fold and a novel all-ß-sheet dimer. Phylogenetic analysis suggests that, within the chemokine family, XCL1 is most closely related to CCL20, which exhibits antibacterial activity. The in vitro antimicrobial activity of WT-XCL1 and structural variants was quantified using a radial diffusion assay (RDA) and in solution bactericidal assays against Gram-positive and Gram-negative species of bacteria. Comparisons of WT-XCL1 with variants that limit metamorphic interconversion showed a loss of antimicrobial activity when restricted to the conserved chemokine fold. These results suggest that metamorphic folding of XCL1 is required for potent antimicrobial activity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Chemokines, C/pharmacology , Protein Folding , Amino Acid Sequence , Humans , Phylogeny , Protein Binding , Sequence Homology, Amino Acid
20.
Methods Enzymol ; 570: 539-65, 2016.
Article in English | MEDLINE | ID: mdl-26921961

ABSTRACT

The diverse roles of chemokines in normal immune function and many human diseases have motivated numerous investigations into the structure and function of this family of proteins. Recombinant chemokines are often used to study how chemokines coordinate the trafficking of immune cells in various biological contexts. A reliable source of biologically active protein is vital for any in vitro or in vivo functional analysis. In this chapter, we describe a general method for the production of recombinant chemokines and robust techniques for efficient refolding that ensure consistently high biological activity. Considerations for initiating development of protocols consistent with Current Good Manufacturing Practices (cGMPs) to produce biologically active chemokines suitable for use in clinical trials are also discussed.


Subject(s)
Protein Engineering/methods , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Chemotaxis , Chromatography, Affinity , Chromatography, High Pressure Liquid/methods , Cyclic GMP/metabolism , Disulfides/chemistry , Escherichia coli/genetics , Nuclear Magnetic Resonance, Biomolecular , Protein Processing, Post-Translational , Protein Refolding , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...