Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(3): e0247420, 2021.
Article in English | MEDLINE | ID: mdl-33765064

ABSTRACT

The effect of two microbial phytases at two dose-levels on performance and apparent ileal digestibility (AID) of nutrients in broilers fed European-type diets was studied. A total of 1,200 d-old Ross 308 male broilers were randomly assigned to 5 treatments with 30 birds/pen and 8 pens/treatment. A nutritionally adequate positive control (PC) diet was tested against 4 experimental diets containing reduced total P, retainable P, Ca and Na as per the recommended nutritional contribution for Buttiauxella phytase (Phy B) at 1,000 FTU/kg (-1.87 g/kg, -1.59 g/kg, -1.99 g/kg and -0.4 g/kg vs. PC, respectively). Experimental diets were supplemented with Phy B at 500 FTU/kg or 1,000 FTU/kg, or Citrobacter phytase (Phy C) at 1,000 FTU/kg or 2,000 FTU/kg. Diets were based on corn, soybean meal, rapeseed meal and sunflower meal and formulated by phase (starter 1-10 d, grower 11-21 d) in crumbled or pelleted form. Overall (d 1-21), at 1,000 FTU/kg, birds fed Phy C exhibited lower BWG (-2.7%), FI (-3.4%) and tibia ash (-2.2%) vs. PC (P < 0.05), and reduced BWG (-3.6%), FI (-3.9%) and tibia ash (-1.8%) vs. Phy B (P < 0.05). Phy B at 1,000 FTU/kg and Phy C at 2,000 FTU/kg maintained performance equivalent to the PC. Digestibility of Ca did not differ among phytase treatments but at 1,000 FTU/kg AID P was greater with Phy B than Phy C (72.3% vs. 62.7%, P < 0.05). Ileal phytate (myo-inositol hexakisphosphate, IP6) digestibility was greatest with Phy B at 1,000 FTU/kg which was higher than Phy C at 1,000 FTU/kg (87.6 vs. 60.6%, P < 0.05). The findings indicate a higher phytate degradation rate of Phy B than Phy C at equivalent dose-level and this is correlated to the performance of the broilers.


Subject(s)
6-Phytase/metabolism , Animal Feed/analysis , Digestion/drug effects , Animal Husbandry/methods , Animal Nutritional Physiological Phenomena/drug effects , Animals , Chickens/metabolism , Citrobacter/metabolism , Diet/veterinary , Dietary Supplements/analysis , Enterobacteriaceae/metabolism , Ileum/drug effects , Ileum/metabolism , Male , Phytic Acid/metabolism
2.
PLoS One ; 9(3): e91091, 2014.
Article in English | MEDLINE | ID: mdl-24609095

ABSTRACT

The trace element zinc is often used in the diet of weaned piglets, as high doses have resulted in positive effects on intestinal health. However, the majority of previous studies evaluated zinc supplementations for a short period only and focused on the small intestine. The hypothesis of the present study was that low, medium and high levels of dietary zinc (57, 164 and 2,425 mg Zn/kg from zinc oxide) would affect colonic morphology and innate host defense mechanisms across 4 weeks post-weaning. Histological examinations were conducted regarding the colonic morphology and neutral, acidic, sialylated and sulphated mucins. The mRNA expression levels of mucin (MUC) 1, 2, 13, 20, toll-like receptor (TLR) 2, 4, interleukin (IL)-1ß, 8, 10, interferon-γ (IFN-γ) and transforming growth factor-ß (TGF-ß) were also measured. The colonic crypt area increased in an age-depending manner, and the greatest area was found with medium concentration of dietary zinc. With the high concentration of dietary zinc, the number of goblet cells containing mixed neutral-acidic mucins and total mucins increased. Sialomucin containing goblet cells increased age-dependently. The expression of MUC2 increased with age and reached the highest level at 47 days of age. The expression levels of TLR2 and 4 decreased with age. The mRNA expression of TLR4 and the pro-inflammatory cytokine IL-8 were down-regulated with high dietary zinc treatment, while piglets fed with medium dietary zinc had the highest expression. It is concluded that dietary zinc level had a clear impact on colonic morphology, mucin profiles and immunological traits in piglets after weaning. Those changes might support local defense mechanisms and affect colonic physiology and contribute to the reported reduction of post-weaning diarrhea.


Subject(s)
Colon/anatomy & histology , Colon/metabolism , Diet , Gene Expression Regulation, Developmental/drug effects , Mucins/metabolism , Weaning , Zinc Oxide/pharmacology , Animals , Colon/drug effects , Cytokines/genetics , Cytokines/metabolism , Goblet Cells/drug effects , Goblet Cells/metabolism , Mucins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Staining and Labeling , Sus scrofa
3.
Br J Nutr ; 109(6): 1001-12, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-22850079

ABSTRACT

Casein glycomacropeptide (CGMP), a glycoprotein originating during cheese manufacture, has shown promising effects by promoting the growth of some beneficial bacteria in vitro, although its activity has not been well explored. The present study was designed to evaluate the effects of CGMP against enterotoxigenic Escherichia coli (ETEC) K88 in vitro (Trial 1) and in vivo (Trial 2). In Trial 1, increasing concentrations of CGMP (0, 0.5, 1.5 or 2.5 mg/ml) were tested regarding its ability to block the attachment of ETEC K88 to ileal mucosa tissues obtained from piglets. Increasing the concentration of CGMP resulted in a gradual decrease in ETEC K88 attachment to the epithelial surface. In Trial 2, seventy-two piglets were distributed in a 2 × 2 factorial combination including or omitting CGMP in the diet (control diet v. CGMP) and challenged or not with ETEC K88 (yes v. no). Inclusion of CGMP increased crude protein, ammonia and isoacid concentrations in colon digesta. CGMP also increased lactobacilli numbers in ileum and colon digesta, and reduced enterobacteria counts in mucosa scrapings and the percentage of villi with E. coli adherence measured by fluorescence in situ hybridisation. The inclusion of CGMP in the diets of challenged animals also prevented the increase of enterobacteria in ileal digesta. We can conclude that CGMP may improve gut health by diminishing the adhesion of ETEC K88 to the intestinal mucosa, by increasing the lactobacilli population in the intestine and by reducing the overgrowth of enterobacteria in the digestive tract of piglets after an ETEC K88 challenge.


Subject(s)
Bacterial Adhesion/drug effects , Caseins/administration & dosage , Enterotoxigenic Escherichia coli/physiology , Intestinal Mucosa/microbiology , Lactobacillus/growth & development , Peptide Fragments/administration & dosage , Sus scrofa/microbiology , Animals , Antigens, Bacterial/analysis , Caseins/metabolism , Diet , Enterotoxigenic Escherichia coli/drug effects , Enterotoxigenic Escherichia coli/immunology , Escherichia coli Proteins/analysis , Fimbriae Proteins/analysis , Intestines/microbiology , Peptide Fragments/metabolism , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...