Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res A ; 87(1): 229-35, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18092353

ABSTRACT

Angioplasty with stent placement is commonly used to treat coronary atherosclerosis. However, 20-40% of stainless steel stents restenose within 6 months via a prolonged inflammatory response mediated by monocytic infiltration and cytokine secretion. In the current study, we tested a hypothesis that blood flow and monocytes interact to alter stent corrosion. We assessed the effects of THP1 monocytes on the corrosion rate of 316L stainless steel (316LSS) under shear stress (0.5-50 dyn/cm(2)). In addition, THP1 cytokine secretion was determined using cytokine arrays and ELISA analyses. Data were compared using ANOVA and Tukey post hoc analysis (alpha = 0.05). Monocytes significantly lowered 316LSS corrosion rates without limiting current density. However, shear stress alone did not alter the corrosion rate of 316LSS. THP1 cells adhered to the 316LSS surface at all flow rates. Exposure to the 316LSS/corrosion test under high fluid flow rates increased (>twofold) the secretion of 7 of the 42 cytokines tested (angeogenin, GRO, I309, interleukin 8, interleukin 6, interleukin 1beta, and macrophage chemoattractant protein-1). Each of these cytokines play a role in wound healing, macrophage differentiation, and cell proliferation, all hallmarks of in-stent restenosis. Furthermore, only IL8 levels were significantly higher than any of the system controls during the 316LSS/corrosion test conditions. The IL8 levels from the 316LSS/corrosion tests were not significantly different from the +LPS control. Together, these data suggest that monocytic cells maybe activated by exposure to 316LSS stents and could contribute to in-stent restenosis and altered corrosion of the stent.


Subject(s)
Monocytes/cytology , Shear Strength , Stainless Steel/chemistry , Stents , Analysis of Variance , Angioplasty, Balloon, Coronary , Biocompatible Materials/chemistry , Blood Flow Velocity , Cell Line , Coronary Artery Disease/physiopathology , Coronary Artery Disease/therapy , Coronary Restenosis/immunology , Corrosion , Cytokines/immunology , Cytokines/metabolism , Electrochemistry , Humans , Interleukin-8/immunology , Interleukin-8/metabolism , Lipopolysaccharides/immunology , Materials Testing , Monocytes/immunology , Monocytes/metabolism , Stress, Mechanical
2.
J Biomed Mater Res A ; 79(1): 16-22, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16758452

ABSTRACT

A goal of treatment in periodontal therapy is to regenerate a new fibroblastic attachment rather than to repair lost attachment with a long junctional epithelium. To date, there is no evidence that fibroblastic attachment formed during regeneration is stronger or less susceptible to periodontal breakdown than a long junctional epithelial attachment. We measured the rate and strength of attachment of epithelial cells (NHEK) and periodontal ligament fibroblasts (PDLF) cultured individually and cocultured to dentin surfaces to determine which cell type has a faster attachment rate and greater adhesive strength to human dentin, and whether the cell types attach independently. Longitudinal dentin slices were seeded with either PDLF or NHEK for 2 or 24 h. The specimens were placed into a parallel plate flow chamber and defined laminar shear stresses were applied. Shear stress was created by step increases in fluid flow rate. Effluent fluid was collected and cell numbers (detached) were counted using a hemocytometer. Cocultures of PDLF and NHEK at three seeding ratios (10:1, 1:1, 1:10) were also tested. Each cell type attached equally well to polystyrene or dentin. PDLF showed a stronger attachment to polystyrene and dentin at 24 versus 2 h. NHEK attached to polystyrene or dentin equally well at 2 and 24 h. NHEK were more strongly attached after 2 h when compared to PDLF. PDLF were more strongly attached after 24 h versus NHEK. When NHEK and PDLF were seeded together on dentin at a 1:1 ratio, PDLF appeared to be more strongly attached than NHEK at 2 but not 24 h. At a ratio of 10 PDLF:1 NHEK, PDLF appeared to be more strongly attached at 2 and 24 h. At a ratio of 1 PDLF:10 NHEK, NHEK appeared to be more strongly attached at 2 h, but PDLF showed a trend of stronger attachment at 24 h. We conclude that epithelial cells attach more quickly to dentin surfaces than PDLF, but do not demonstrate increased attachment strength over time (PDLF do show increased attachment strength overtime). The purported advantages of periodontal regeneration over periodontal repair are supported by our results. Furthermore, our results support the concept of guided tissue regeneration. On the basis of on cellular competition experiments, epithelial cells and PDLF do not act independently, because epithelial cells enhanced the attachment rate of PDLF.


Subject(s)
Dentin/metabolism , Epithelial Cells/physiology , Fibroblasts/physiology , Periodontal Ligament/cytology , Cell Adhesion/physiology , Cells, Cultured , Humans , Periodontal Ligament/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...