Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(11): e79485, 2013.
Article in English | MEDLINE | ID: mdl-24223954

ABSTRACT

Huanglongbing (HLB) presumably caused by Candidatus Liberibacter asiaticus (CLas) threatens the commercial U.S. citrus crop of an annual value of $3 billion. The earliest shift in metabolite profiles of leaves from greenhouse-grown sweet orange trees infected with Clas, and of healthy leaves, was characterized by HPLC-MS concurrently with PCR testing for the presence of Clas bacteria and observation of disease symptoms. Twenty, 8-month-old 'Valencia' and 'Hamlin' trees were grafted with budwood from PCR-positive HLB source trees. Five graft-inoculated trees of each variety and three control trees were sampled biweekly and analyzed by HPLC-MS and PCR. Thirteen weeks after inoculation, Clas was detected in newly growing flushes in 33% and 55% of the inoculated 'Hamlin' and 'Valencia' trees, respectively. Inoculated trees remained asymptomatic in the first 20 weeks, but developed symptoms 30 weeks after grafting. No significant differences in the leaf metabolite profiles were detected in Clas-infected trees 23 weeks after inoculation. However, 27 weeks after inoculation, differences in metabolite profiles between control leaves and those of Clas-infected trees were evident. Affected compounds were identified with authentic standards or structurally classified by their UV and mass spectra. Included among these compounds are flavonoid glycosides, polymethoxylated flavones, and hydroxycinnamates. Four structurally related hydroxycinnamate compounds increased more than 10-fold in leaves from 'Hamlin' and 'Valencia' sweet orange trees in response to Clas infection. Possible roles of these hydroxycinnamates as plant defense compounds against the Clas infection are discussed.


Subject(s)
Citrus sinensis/metabolism , Citrus sinensis/microbiology , Metabolomics , Plant Leaves/metabolism , Plant Leaves/microbiology , Rhizobiaceae/physiology , Chromatography, High Pressure Liquid , Mass Spectrometry , Time Factors
2.
J Food Prot ; 65(12): 1943-8, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12495014

ABSTRACT

This study was undertaken to investigate interference by acids commonly found in fruit juice in Escherichia coli assays involving the use of 4-methylumbelliferyl-beta-D-glucuronide (MUG) as a fluorogenic substrate for enzyme reaction. Fluorescence intensity was negatively correlated (P < 0.001) with the volume of fresh citrus juice tested by the lauryl tryptose broth (LST)-MUG assay, and the permissible sample sizes were limited to 0.3 and 0.5 ml for fresh citrus juices with pHs of 3.3 and 3.9, respectively. In addition, false-negative results were visually observed under UV light when the E*Colite assay was used to test large volumes (5 to 10 ml per test) of fresh citrus juice or when the test broth used for the LST-MUG assay was supplemented with citric, malic, or tartaric acid at 2 to 4 g/liter. These results suggest that the size and pH of acidic samples should be controlled in MUG-based fluorogenic assays. The inhibitory effect on fluorescence was due to high acidity, which reduces fluorescence from 4-methylumbelliferone. Buffering improved the assays. When sodium bicarbonate was incorporated in the enrichment broth at 10 g/liter, the permissible sample sizes for fresh grapefruit juice (pH 3.1) increased from 0.3 to 1 ml for the LST-MUG (with 9.9 ml of broth) assay and from 3 to 10 ml for the E*Colite (with 99 ml of broth) assay.


Subject(s)
Beverages/microbiology , Escherichia coli/isolation & purification , Food Microbiology , Hymecromone/analogs & derivatives , Bacteriological Techniques , Beverages/analysis , Escherichia coli/enzymology , False Negative Reactions , Fluorescent Dyes , Hydrogen-Ion Concentration , Sample Size
SELECTION OF CITATIONS
SEARCH DETAIL
...