Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38326456

ABSTRACT

Stress is thought to be an important contributing factor for eating disorders; however, neural substrates underlying the complex relationship between stress and appetite are not fully understood. Using in vivo recordings from awake behaving mice, we show that various acute stressors activate catecholaminergic nucleus tractus solitarius (NTSTH) projections in the paraventricular hypothalamus (PVH). Remarkably, the resulting adrenergic tone inhibits MC4R-expressing neurons (PVHMC4R), which are known for their role in feeding suppression. We found that PVHMC4R silencing encodes negative valence in sated mice and is required for avoidance induced by visceral malaise. Collectively, these findings establish PVHMC4R neurons as an effector of stress-activated brainstem adrenergic input in addition to the well-established hypothalamic-pituitary-adrenal axis. Convergent modulation of stress and feeding by PVHMC4R neurons implicates NTSTH → PVHMC4R input in stress-associated appetite disorders.

2.
Cell Rep ; 43(1): 113630, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38165803

ABSTRACT

Opioids are generally known to promote hedonic food consumption. Although much of the existing evidence is primarily based on studies of the mesolimbic pathway, endogenous opioids and their receptors are widely expressed in hypothalamic appetite circuits as well; however, their role in homeostatic feeding remains unclear. Using a fluorescent opioid sensor, deltaLight, here we report that mediobasal hypothalamic opioid levels increase by feeding, which directly and indirectly inhibits agouti-related protein (AgRP)-expressing neurons through the µ-opioid receptor (MOR). AgRP-specific MOR expression increases by energy surfeit and contributes to opioid-induced suppression of appetite. Conversely, its antagonists diminish suppression of AgRP neuron activity by food and satiety hormones. Mice with AgRP neuron-specific ablation of MOR expression have increased fat preference without increased motivation. These results suggest that post-ingestion release of endogenous opioids contributes to AgRP neuron inhibition to shape food choice through MOR signaling.


Subject(s)
Analgesics, Opioid , Neurons , Animals , Mice , Agouti-Related Protein/metabolism , Analgesics, Opioid/pharmacology , Eating , Hypothalamus/metabolism , Neurons/metabolism , Signal Transduction
3.
Nat Neurosci ; 27(1): 102-115, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37957320

ABSTRACT

Food intake follows a predictable daily pattern and synchronizes metabolic rhythms. Neurons expressing agouti-related protein (AgRP) read out physiological energetic state and elicit feeding, but the regulation of these neurons across daily timescales is poorly understood. Using a combination of neuron dynamics measurements and timed optogenetic activation in mice, we show that daily AgRP-neuron activity was not fully consistent with existing models of homeostatic regulation. Instead of operating as a 'deprivation counter', AgRP-neuron activity primarily followed the circadian rest-activity cycle through a process that required an intact suprachiasmatic nucleus and synchronization by light. Imposing novel feeding patterns through time-restricted food access or periodic AgRP-neuron stimulation was sufficient to resynchronize the daily AgRP-neuron activity rhythm and drive anticipatory-like behavior through a process that required DMHPDYN neurons. These results indicate that AgRP neurons integrate time-of-day information of past feeding experience with current metabolic needs to predict circadian feeding time.


Subject(s)
Neurons , Suprachiasmatic Nucleus , Animals , Mice , Agouti-Related Protein , Feeding Behavior/physiology , Neurons/physiology
4.
Nat Commun ; 14(1): 6602, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37857606

ABSTRACT

Norepinephrine (NE) is a well-known appetite regulator, and the nor/adrenergic system is targeted by several anti-obesity drugs. To better understand the circuitry underlying adrenergic appetite control, here we investigated the paraventricular hypothalamic nucleus (PVN), a key brain region that integrates energy signals and receives dense nor/adrenergic input, using a mouse model. We found that PVN NE level increases with signals of energy deficit and decreases with food access. This pattern is recapitulated by the innervating catecholaminergic axon terminals originating from NTSTH-neurons. Optogenetic activation of rostral-NTSTH → PVN projection elicited strong motivation to eat comparable to overnight fasting whereas its inhibition attenuated both fasting-induced & hypoglycemic feeding. We found that NTSTH-axons functionally targeted PVNMC4R-neurons by predominantly inhibiting them, in part, through α1-AR mediated potentiation of GABA release from ARCAgRP presynaptic terminals. Furthermore, glucoprivation suppressed PVNMC4R activity, which was required for hypoglycemic feeding response. These results define an ascending nor/adrenergic circuit, NTSTH → PVNMC4R, that conveys peripheral hunger signals to melanocortin pathway.


Subject(s)
Hunger , Melanocortins , Melanocortins/metabolism , Adrenergic Agents/metabolism , Appetite , Paraventricular Hypothalamic Nucleus/metabolism , Norepinephrine/metabolism , Hypoglycemic Agents/metabolism
5.
Mol Metab ; 69: 101676, 2023 03.
Article in English | MEDLINE | ID: mdl-36682413

ABSTRACT

OBJECTIVE: Serotonin (5HT) is a well-known anorexigenic molecule, and 5HT neurons of dorsal raphe nucleus (DRN) have been implicated in suppression of feeding; however, the downstream circuitry is poorly understood. Here we explored major projections of DRN5HT neurons for their capacity to modulate feeding. METHODS: We used optogenetics to selectively activate DRN5HT axonal projections in hypothalamic and extrahypothalamic areas and monitored food intake. We next used fiber photometry to image the activity dynamics of DRN5HT axons and 5HT levels in projection areas in response feeding and metabolic hormones. Finally, we used electrophysiology to determine how DRN5HT axons affect downstream neuron activity. RESULTS: We found that selective activation of DRN5HT axons in (DRN5HT → LH) and (DRN5HT → BNST) suppresses feeding whereas activating medial hypothalamic projections has no effect. Using in vivo imaging, we found that food access and satiety hormones activate DRN5HT projections to LH where they also rapidly increase extracellular 5HT levels. Optogenetic mapping revealed that DRN5HT → LHvGAT and DRN5HT → LHvGlut2 connections are primarily inhibitory and excitatory respectively. Further, in addition to its direct action on LH neurons, we found that 5HT suppresses GABA release from presynaptic terminals arriving from AgRP neurons. CONCLUSIONS: These findings define functionally redundant forebrain circuits through which DRN5HT neurons suppress feeding and reveal that these projections can be modulated by metabolic hormones.


Subject(s)
Dorsal Raphe Nucleus , Serotonergic Neurons , Dorsal Raphe Nucleus/metabolism , Serotonergic Neurons/metabolism , Serotonin/metabolism , Hypothalamus/metabolism , Hormones
6.
Hum Factors ; 57(6): 1051-62, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26342062

ABSTRACT

OBJECTIVE: The authors determine whether transcranial direct current stimulation (tDCS) can reduce resumption time when an ongoing task is interrupted. BACKGROUND: Interruptions are common and disruptive. Working memory capacity has been shown to predict resumption lag (i.e., time to successfully resume a task after interruption). Given that tDCS applied to brain areas associated with working memory can enhance performance, tDCS has the potential to improve resumption lag when a task is interrupted. METHOD: Participants were randomly assigned to one of four groups that received anodal (active) stimulation of 2 mA tDCS to one of two target brain regions, left and right dorsolateral prefrontal cortex (DLPFC), or to one of two control areas, active stimulation of the left primary motor cortex or sham stimulation of the right DLPFC, while completing a financial management task that was intermittently interrupted with math problem solving. RESULTS: Anodal stimulation to the right and left DLPFC significantly reduced resumption lags compared to the control conditions (sham and left motor cortex stimulation). Additionally, there was no speed-accuracy tradeoff (i.e., the improvement in resumption time was not accompanied by an increased error rate). CONCLUSION: Noninvasive brain stimulation can significantly decrease resumption lag (improve performance) after a task is interrupted. APPLICATION: Noninvasive brain stimulation offers an easy-to-apply tool that can significantly improve interrupted task performance.


Subject(s)
Memory, Short-Term/physiology , Motor Cortex/physiology , Prefrontal Cortex/physiology , Psychomotor Performance/physiology , Transcranial Magnetic Stimulation/methods , Adolescent , Adult , Female , Humans , Male , Random Allocation , Young Adult
7.
J Biomech ; 43(14): 2785-91, 2010 Oct 19.
Article in English | MEDLINE | ID: mdl-20678772

ABSTRACT

The ultrastructural mechanism for strain rate sensitivity of collagenous tissue has not been well studied at the collagen fibril level. Our objective is to reveal the mechanistic contribution of tendon's key structural component to strain rate sensitivity. We have investigated the structure of the collagen fibril undergoing tension at different strain rates. Tendon fascicles were pulled and fixed within the linear region (12% local tissue strain) at multiple strain rates. Although samples were pulled to the same percent elongation, the fibrils were noticed to elongate differently, increasing with strain rate. For the 0.1, 10, and 70%/s strain rates, there were 1.84±3.6%, 5.5±1.9%, and 7.03±2.2% elongations (mean±S.D.), respectively. We concluded that the collagen fibrils underwent significantly greater recruitment (fibril strain relative to global tissue strain) at higher strain rates. A better understanding of tendon mechanisms at lower hierarchical levels would help establish a basis for future development of constitutive models and assist in tissue replacement design.


Subject(s)
Patellar Ligament/physiology , Animals , Biomechanical Phenomena , Collagen/physiology , Collagen/ultrastructure , In Vitro Techniques , Microscopy, Electron, Scanning , Models, Biological , Patellar Ligament/anatomy & histology , Patellar Ligament/ultrastructure , Rabbits , Stress, Mechanical , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...