Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(35): 24320-24330, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37583666

ABSTRACT

The present investigation deals with the evaluation of the wound healing efficacy of sandalwood bark-derived carbon nanospheres loaded with curcumin-embedded polyvinyl alcohol (PVA) nanofiber membranes (NF). Carbon nanospheres (CNS) were prepared by pyrolyzing sandal wood bark powder at 750 °C. The morphology was confirmed by field emission scanning electron micrographs and a rich amount of carbon was confirmed by the energy dispersive X-ray technique. Curcumin, an active wound healing drug was loaded onto synthesized CNS and confirmed by ATR-IR studies. Drug-loaded CNS were anchored in a PVA matrix via electrospun nanofiber fabrication. The fabricated nanofiber membranes were characterized and evaluated for wound healing efficiency. The cytotoxicity assay proved the non-toxic nature of the prepared PVA/CNS-curcumin-loaded NF. Membranes with active CNS/drug showed better antimicrobial activity against S. aureus and E. coli, which was estimated using the zone of inhibition (ZOI) test. The in vitro scratch wound healing assay of prepared PVA/CNS-curcumin nanofibers was efficient enough and showed 92 to 98% wound closure, which was greater than the control (without drug) nanofiber membranes. The PVA nanofiber matrix with interconnected structure and carbon nanostructures together enhanced the wound healing efficacy of the considered wound healing membrane, which is a promising novel approach for future wound healing patches.

2.
Soft Matter ; 19(29): 5560-5574, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37436460

ABSTRACT

We have developed a simple and effective method to prepare stable wettability gradients on an elastomeric soft substrate, polydimethylsiloxane (PDMS). In our method, a partially cured PDMS film composed of a definite ratio of elastomer and crosslinking agent was heated over a hot surface with a temperature gradient. This causes differential thermal curing of the PDMS film and the water contact angle (wettability) of the resultant surface showed gradual variation across the length. This method allows us to design and fabricate wettability gradients with rationally controlled directionality and shapes (e.g., linear and radial gradients). The stability of the wettability gradients was studied and a chemical treatment method was developed to enhance the stability at room temperature. Stable wettability gradients prepared through this method can find applications as reliable platforms and scaffolds offering controlled or directional wetting and adhesion. We have demonstrated the practical applications of the wettability gradients in directional water collection, controlled crystallization of materials, and controlled cell adhesion of HeLa cells, osteoblasts and NIH/3T3 cells. The multi-functional characteristics of these wettable gradients are expected to be handy in other domains using soft materials and interfaces also.

3.
Dalton Trans ; 48(24): 8573-8577, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31157815

ABSTRACT

Cooperative catalysis has been demonstrated over metal-MOF hybrids for the conversion of vanillin (biomass based platform molecules) into value-added 2-methoxy-4-methylphenol. Over a Pd@UiO-66(Hf) core-shell catalyst, cooperativity between Brønsted acidic µ3-OH groups and Pd active sites present at the interface has rendered a catalytic performance of >99% vanillin conversion and >99% 2-methoxy-4-methylphenol selectivity at 90 °C under 3 bar H2 in water. An enhanced cooperative effect has been observed over a core-shell catalyst compared to a support catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...